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Stability of cylindrical domains in phase-separating binary fluids in shear flow

Amalie Frischknecht
Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106-4030

~Received 18 May 1998!

The stability of a long cylindrical domain in a phase-separating binary fluid in an external shear flow is
investigated by linear stability analysis. Using the coupled Cahn-Hilliard and Stokes equations, the stability
eigenvalues are derived analytically for long-wavelength perturbations, for arbitrary viscosity contrast between
the two phases. The shear flow is found to suppress and sometimes completely stabilize both the hydrodynamic
Rayleigh instability and the thermodynamic instability of the cylinder against varicose perturbations, by mixing
with nonaxisymmetric perturbations. The results are consistent with recent observations of a ‘‘string phase’’ in
phase-separating fluids in shear.@S1063-651X~98!15909-3#

PACS number~s!: 68.10.2m, 64.75.1g, 47.20.Hw, 47.20.2k
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I. INTRODUCTION

Phase-separating binary fluids form complex patterns
domains after a quench into the two-phase region of
phase diagram. The domain morphology is determined b
number of factors, such as the volume fractions of the t
phases, their viscosities, and any external forces applie
the system@1,2#. Of particular interest here is the effect of a
external shear flow applied to the fluid. The shear flow co
petes with the phase-separation process, influencing the
phology and stability of the domains. Besides being a fa
nating problem in nonequilibrium physics, this question is
practical significance because the final properties of ind
trial materials involving binary fluids often depend on t
domain morphology.

At late times after a quench into an unstable state
phase-separating binary fluid consists of domains of the
phases that coarsen with time. The presence of a shear
dramatically alters the kinetics of the phase separation.
effects of the deformation by the shear flow depend on
relations between the various time scales in the system.
characteristic time scale for the shear flow is just the inve
shear rate, 1/ġ. When this time is shorter than the charact
istic relaxation time of thermal concentration fluctuatio
tj , ġtj.1, the system is in a ‘‘strong-shear’’ regime
which the critical fluctations are modified by the flow. Co
versely, in the ‘‘weak-shear’’ regimeġtj,1 the critical
fluctuations are not affected by the flow. A third time sca
which will be crucial here, is associated with the domai
Clearly when the growth rate of the domains, or the grow
rate of any instabilities associated with the domains,
smaller than the time associated with the flow, the shear fl
will affect the morphology and stability of the domains.

Of interest in this paper is the competition between
shear flow and the coarsening process. The shear flow t
to deform and elongate or fragment domains, whereas
thermodynamics favors coarsening to larger, isotropic
mains. This competition leads to the formation of a noneq
librium, dynamic steady state in which the coarsening
stopped by the shear flow@3–5#. When the viscosities of the
two phases are similar and one phase forms a droplet ph
the steady state consists of somewhat deformed drople
PRE 581063-651X/98/58~3!/3495~20!/$15.00
f
e
a

o
to

-
or-
i-
f
s-

a
o

ow
e
e
he
e
-

,
.
h
s
w

e
ds

he
-

i-
s

se,
of

the order of the Taylor breakup sizeR;s/hġ, wheres is

the surface tension,h the viscosity, andġ the shear rate
@5–8#. On the other hand, when the two phases are b
percolated the morphology is an anisotropic bicontinuo
structure with apparently stable domains highly elonga
along the flow direction. The anisotropy in these bicontin
ous patterns is much larger than the aspect ratio of 2 o
seen for isolated droplets@9#. Microscope observations hav
shown that the domains can be elongated into long cylind

@10–12#. In weak shear,ġtj,1, these stringlike domains
still undergo frequent breakup, reconnection, and branch
whereas in the strong-shear regime the system form
‘‘string phase’’ consisting of macroscopically long cylindr
cal domains aligned with the flow direction. These are s
prising observations, since a long fluid cylinder at rest
unstable against breaking up into spherical droplets via
Rayleigh capillary instability@13,14#. In the situation under
consideration here, the string is a domain of one phase
mersed in the other, which we would also expect to be th
modynamically unstable since the cylinder could lower
surface energy by spheroidizing. Thus the shear flow st
lizes both the thermodynamic instability towards phase se
ration and the hydrodynamic instability of these highly elo
gated domains.

The goal of this paper is to explore the stabilization
cylindrical domains by an imposed shear flow. It is a seq
to my previous work on the stabilization by shear flow of
two-dimensional, lamellar domain in phase-separating bin
fluids @15#. In that paper it was shown that a lamellar doma
at rest with diffuse interfaces is unstable towards a ‘‘va
cose’’ instability. This instability is essentially a coarsenin
effect and depends on the finite width of the interfaces; in
limit of mathematically sharp interfaces, a lamellar domain
stable. An external shear flow stabilizes the lamellar dom
by advecting the top and bottom interfaces with respec
each other so that they no longer can maintain the ex
phase relation that produces the unstable varicose mode

The instability of a quiescent cylindrical domain of on
phase immersed in the other is somewhat different, owing
the different dimensionality. There are two separate for
driving instability, one hydrodynamic and one thermod
namic. Rayleigh@13# and later Tomotika@14# analyzed the
3495 © 1998 The American Physical Society
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3496 PRE 58AMALIE FRISCHKNECHT
instability of an infinitely long viscous fluid cylinder im
mersed in an immiscible fluid to axisymmetric varicose p
turbations, as shown in Fig. 1. When the wavelength of
varicosity is equal to or longer than the circumference of
cylinder, the perturbation is unstable and grows. This is
cause the higher curvature in the necks leads to a hig
Laplace pressure there than in the bulges, which tend
drive fluid from the necks toward the bulges. Eventually t
cylinder will break up into spherical droplets, with less to
surface energy than the original cylinder. However, even
the absence of fluid motion~e.g., consider a cylindrical do
main in a solid binary alloy! a cylindrical domain in the
two-phase state is still unstable. This is due to the Gib
Thomson effect, in which the chemical potential depends
the curvature@15,16#. The higher curvature at the necks w
drive a diffusive flux towards the bulges, also leading
instability. Both of these mechanisms are present even in
limit that the interfaces are mathematically sharp.

In this paper I perform a linear stability analysis to inve
tigate the effect of an external shear flow on the stability o
single infinitely long cylindrical domain, perfectly aligne
with the flow. I consider late times after a quench into t
two-phase region, when the fluid consists of domains of
two phases close to their equilibrium concentrations, se
rated by well-defined interfaces. The formulation of t
problem allows in principle for diffuse interfaces with a fi
nite width j ~when the viscosities of the two phases a
equal!, but in practice results are much easier to obtain in
limit of mathematically sharp interfaces and the correctio
due to finite widths will not affect the results qualitativel
The shear rateġ is assumed to be small enough that t
system is in the weak-shear regime,ġtj,1, so that the shea
flow will not influence the structure of the interfaces the
selves. In this case the usual hydrodynamic equations f
phase-separating fluid are valid. As mentioned above,
string phase itself seems to form only in the strong-sh
regime@17#. However, here I will be concerned not with th
formation of the string phase but with its stability. The go
is to understand the mechanism by which the shear stabi
these remarkably elongated domains. The results may
illuminate the stability of the highly anisotropic, bicontinu
ous morphologies observed in weak shear. I will neglect
ends of the string and also the possiblity that it could
inclined at a small angle to the flow direction. This appro
mation seems reasonable given the extraordinarily high
pect ratio observed for the strings and the fact that long s
der drops in shear have a long central portion that
cylindrical and aligned with the flow@18#.

As well as shedding light on the stability of elongat
domains in phase-separating fluids, this work encompa
the problem of the effect of shear flow on the purely hyd
dynamic viscous Rayleigh instability in immiscible fluid
~neglecting the thermodynamic effects!. To my knowledge
this problem has not been solved before in the particu

FIG. 1. Varicose instability of a fluid cylinder, of wavelengt
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limit examined here. Russo and Steen@19# and Lowry and
Steen@20,21# found that axial flows can suppress capilla
instabilities on cylindrical interfaces. Most other studies
the fluid dynamics literature concerning the effects of ext
nally imposed flows on long fluid cylinders have been in t
context of drop breakup. Several authors have considered
linear stability of an infinitely long fluid cylinder in an elon
gational flow @22–25#. The flow field limits the growth of
any disturbance to a finite value so that there is no true
stability, and the cylinder is stabilized. However, some d
turbances have time to grow transiently to a finite amplitu
comparable to the decreasing radius of the elongating cy
der, causing breakup~even though the disturbances do n
grow exponentially!. Khakhar and Ottino@24# extended the
analysis to general linear flows including shear flow, b
only in the case of small asymmetry, when the shear par
the flow is small compared to the stretching. In this pape
will explore the opposite limit in which the stretching
negligible but the asymmetry is large. Finally, Hinch a
Acrivos studied a finite, long slender drop in shear flow@18#.
They find steady-state solutions for the shape of the dro
all shear rates, but these equilibrium solutions are unsta
above a critical shear rate. This is essentially due to the
that the ends of the drop are not completely aligned with
flow, so that at sufficiently high shear rates the drop can
balance the straining of the ends and it extends transien
becoming progressively thinner. This does not happen fo
infinitely long cylinder, as considered in this paper.

In Sec. II I will describe the model equations of motio
used to describe the fluid. In Sec. III, the equations of mot
are linearized for small perturbations about a cylindrical d
main. Approximate solutions can be found by writing th
stability eigenvalue equation as a matrix equation in a tr
cated set of ‘‘basis’’ states, corresponding to different p
turbation modes of the cylinder. The matrix elements
calculated in Sec. IV. We will see in Sec. V that the she
flow has the effect of mixing nonaxisymmetric disturbanc
with the axisymmetric varicose mode, leading to stabiliz
tion in some circumstances. I will first discuss the results
the special case in which the viscosities of the two phases
equal, and then generalize to the case of arbitrary visco
ratio. Some discussion of the relations of this work to expe
ment will be presented in Secs. V C and VI.

II. MODEL EQUATIONS

I use the same equations of motion as in@15#. A simple
binary mixture can be described by one scalar order par
eterF, the difference in concentration between the two co
ponents. Since we are interested in late times after a temp
ture quench when the system consists of well-defin
domains, the usual Ginzburg-Landau form for the coar
grained free energy of a symmetrical mixture is sufficient
describe the thermodynamics:

F@F#5E dr ~ 1
2 K~¹F!22 1

2 r 0F21 1
4 gF4!, ~2.1!

wherer 0 andg are positive constants so that the fluid is
the two-phase region. Minimizing the homogeneous par
F leads to the values of the concentration in the two b
phases at equilibrium:
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F56Ar 0

g
[6fe .

The fluid is assumed to be incompressible and sufficie
viscous that inertial effects are negligible. The equations
motion for the system are then the modified Cahn-Hillia
equation forF, the Stokes~creeping flow! equation for the
velocity field u, and the incompressibility condition:

]F

]t
52u•¹F1M¹2

dF

dF
, ~2.2!

05n¹2u1¹F
dF

dF
2¹P, ~2.3!

05¹•u. ~2.4!

Here M is a concentration-independent mobility,n is the
viscosity, andP is the pressure, which in general is dete
mined by the incompressibility condition~2.4!. The equation
for the velocity~2.3! is generalized to include the coupling o
the order parameter to the velocity field@26#. This term leads
to a capillary force at interfaces, where gradients inF induce
fluid flow. Equations~2.2!–~2.4! are the same as those
‘‘model H’’ ~without the thermal noise terms! used to study
critical binary fluids@27#. These equations have been us
extensively to study phase separation in binary fluids@28#.

Now consider a single cylindrical domain of radiusR
composed of, say, phasea with viscosityn i , immersed in an
infinite region of phaseb with viscosityno as illustrated in
Fig. 2. The external shear flow is imposed along thex direc-
tion by applying a constant shear stressP0 far from the
cylinder. Below I will allow for a finite width interface be
tween the two phases only in the case that the viscosities
equal, n i5no5n; when the viscosities between the tw
phases are different I will assume the interfaces are s
ciently sharp that the viscosity changes discontinuously
the interface so that Eq.~2.3! holds in the two different
phases separately. The first step in a stability analysis of
cylinder is to derive the steady-state solutions to the eq
tions of motion that correspond to these assumptions an
the geometry of Fig. 2. We therefore assume thatF is a
function ofr only and that the velocity is only nonzero in th
x direction,u5u(r ,u) x̂, and look for time-independent so
lutions. The Cahn-Hilliard equation~2.2! has steady-state so
lutions satisfying

dF

dF
52K¹2F2r 0F1gF35m5const, ~2.5!

FIG. 2. Cylindrical domain in shear flow.
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wherem is the exchange chemical potential. Using cylind
cal coordinates (r ,u,x) the stationary concentration profil
fs(r ) therefore satisfies

2K
d2fs

dr2
2

K

r

dfs

dr
2r 0fs1gfs

35m. ~2.6!

For a sufficiently large radius,fs will approach the profile
for a flat interface between the two coexisting phases,

fs~r !>fetanh@~r 2R!/j#, largeR, ~2.7!

where the width of the interface between the two coexist
phases is the thermal correlation lengthj5A2K/r 0. I will
assume throughout thatR@j, so that Eq.~2.7! is reasonable.
Often it will be justified to further approximate the interfaci
profile by a step function so the interfaces are sharp,

fs~r !'feQ„~r 2R!/j…. ~2.8!

Note that for either interfacial profile there is a surface te
sion associated with the presence of the interface, whic
just the excess free energy per unit area at the interface@16#:

s5KE
2`

`

drS dfs

dr D 2

5
4

3
Kfe

2/j5
2

3
r 0fe

2j. ~2.9!

If the viscosities of the two phases are equal,n i5no

5n, applying a constant shear stressP0 far from the cylin-
der leads to simple shear flow everywhere, with station
velocity field

us5ġyx̂5ġr ~cosu!x̂, ~2.10!

where ġ[P0 /n is the shear rate. More generally, for arb
trary viscosity ratiom[n i /no the stationary velocity field
us5us(r ,u) x̂ will have a different slope in the two phase
Taking the interface to be mathematically sharp as in
~2.8!, we can solve Eqs.~2.3! and ~2.4! for us inside and
outside the cylinder separately and match the solutions a
interface atr 5R. The velocity field must be regular at th
origin and correspond to simple shear flow far from the c
inder, so that

lim
r→`

us5ġr ~cosu!x̂,

where the shear rate is defined in terms of the outer visco
ġ[P0 /no. Solving forus gives

us~r !55
2ġ

m11
r ~cosu!x̂, r ,R,

F ġr 1S 2ġR2

m11
2ġR2D 1

r
G ~cosu!x̂, r .R.

~2.11!

It is convenient to rewrite the equations in dimensionle
form by scaling lengths by the correlation lengthj, the con-
centration by its equilibrium magnitude in the bulk phas
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fe , and time by the characteristic diffusion timetj . The
velocity is scaled by the correlation length over the diffusi
time:

r̄5rA r 0

2K
5

r

j
,

t̄ 5t
2Mr o

j2
5

t

tj
,

F̄5
F

fe
,

ū5u
j

2Mr o
5u

tj

j
,

P̄5P
j2

2Kfe
2

.

Note that the new dimensionless correlation length isj̄51.
In dimensionless form the equations of motion are now

]F̄

] t̄
52ū•¹̄F̄1

1

2
¹̄2S 2

1

2
¹̄2F̄2F̄1F̄3D , ~2.12!

05¹̄2ū1
1

h
¹̄F̄S 2

1

2
¹̄2F̄2F̄1F̄3D2

1

h
¹̄P̄, ~2.13!

05¹̄•ū. ~2.14!

The equations are characterized by a dimensionless pa
eter, the rescaled viscosityh:

h5
Mgn

K
5

4Mr on

3sj
. ~2.15!

~In the case of two different viscosities there are two dim
sionless parameters,h i andho.) In dimensionless form the
stationary solutions corresponding to the cylindrical dom
in shear are

f̄s~ r̄ !5tanh~ r̄ 2R!, ~2.16!

ūs~ r̄ !55
2S

m11
r̄ ~cosu!x̂, r̄ ,R,

FSr̄1S 2SR2

m11
2SR2D1

r̄
G ~cosu!x̂, r̄ .R,

~2.17!

where the dimensionless radius of the cylinder isR5R/j.
The dimensionless shear rateS[ġtj is simply the product of
the shear rate and the diffusion timetj and thus represents
second dimensionless parameter that characterizes
strength of the shear flow.
m-

-

n

the

III. STABILITY ANALYSIS

In this section, I present the strategy for calculating t
stability of the cylindrical domain. We know that an infinit
cylinder is unstable to varicose perturbations. One co
imagine other, nonaxisymmetric perturbations of the cylind
as well, such as the ‘‘undulation’’ mode shown in Fig. 3.
Sec. IV, we will find that the cylinder is stable to all of thes
perturbations. The shear flow will have the effect of mixin
the different possible perturbations.

Consider small perturbations about the stationary so
tions found above~in the rest of the discussion I will drop
the bars over the dimensionless variables for clarity!:

f5F2fs , ~3.1!

v5u2us . ~3.2!

To linear order in the small perturbationsf andv, the equa-
tions of motion are

]f

]t
52us~r !cosu

]f

]x
2fs8~r !v r1

1

2
¹2S 2

1

2
¹2

1Ws~r ! Df, ~3.3!

05¹2v1
1

h
fs8~r !S 2

1

2
¹21Ws~r ! Df r̂2

1

h
¹P, ~3.4!

05¹•v. ~3.5!

Here h is the appropriate viscosity for whichever region
under consideration,v r is the r component of the perturbe
velocity field v, and primes indicate differentiation with re
spect tor . Ws is a function of the stationary concentratio
profile:

Ws~r !5
]2f

]f2U
fs~r !

52113fs
2~r !. ~3.6!

The time dependence of the perturbations is determi
by the concentration equation~3.3!. The system is transla
tionally invariant in thex direction, so we can write any
perturbation as a sum over Fourier modes inx. Since we are
interested in the growth~or damping! of perturbations we
take

f5f~r ,u!eikx2vt, v5v~r ,u!eikx2vt. ~3.7!

We will be interested in long-wavelength fluctuations f
which the dimensionless wave numberk!1 @let k5k/j be
the wave number andÃ5v/tj be the growth~damping! rate
in the original variables#. Substitution into Eq.~3.3! leads to
an eigenvalue equation for the growth ratev:

FIG. 3. Undulationm51 mode of the cylinder.
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vf~r ,u!5 ikus~r !cosuf~r ,u!1fs8~r !v r~r ,u!2
1

2F1

r

]

]r S r
]

]r D1
1

r 2

]2

]u2
2k2G

3F2
1

2

1

r

]

]r S r
]

]r D2
1

2r 2

]2

]u2
1

1

2
k21Ws~r !Gf~r ,u!. ~3.8!
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A real, positive value ofv(k) indicates stability of the cyl-
inder against the perturbation. Sincev r depends onf
through Eq.~3.4!, this eigenvalue equation is essentially
integro-differential equation in which the expression forv r
acts as an integral operator onf.

Equation~3.8! cannot be solved exactly, so we need
approximate approach. Following the calculational appro
outlined in @15#, first consider the Cahn-Hilliard part of Eq
~3.8!, without the hydrodynamic terms:

vf5GFf, ~3.9!

where we have defined the operators

G52
1

2F1

r

]

]r S r
]

]r D1
1

r 2

]2

]u2
2k2G , ~3.10a!

F5F2
1

2

1

r

]

]r S r
]

]r D2
1

2r 2

]2

]u2
1

1

2
k21Ws~r !G .

~3.10b!

This part of Eq.~3.8! includes the dynamics of the conce
tration field on the scale of the interface. SinceS,1 (ġtj

,1), the shear flow acts on the scale of the domains bu
not strong enough to alter the interfacial profile. As we w
see shortly, this assumption allows us to find an approxim
solution for f. Let fn be the set of eigenfunctions of Eq
~3.9! and define a set of ‘‘conjugate’’ functions by

Gf̃n5fn . ~3.11!

Then one can show thatG and F are Hermitian operators
~although their product is not! as long as thefn andf̃n obey
periodic boundary conditions or vanish at infinity. The eige
valuesvn are real and the eigenfunctions and their con
gates are orthogonal:

~f̃m ,fn![E dr f̃m* ~r !fn~r !50 for nÞm.

For any pair of trial functionsf0 and f̃0 obeying the same
boundary conditions, there is a variational relation that gi
an upper bound on the lowest eigenvaluev @29,30#:

vmin<
~f0 ,Ff0!

~f̃0 ,f0!
. ~3.12!

Here the parentheses again indicate inner products.
This variational theorem can be exploited to find solutio

to Eq. ~3.9! corresponding to various perturbations of t
cylinder. Application of Eq.~3.12! requires a good trial func
h

is
l
te

-
-

s

s

tion f0 . The smallest eigenvalues of Eq.~3.9! will corre-
spond to eigenfunctions describingu-dependent deforma
tions of the cylinder, in which the interface is translated by
small amount but the interfacial width remains fixed@15,29#.
Higher eigenvalues correspond to other deformation mo
in which the structure of the interface changes, such
breathing modes that change the width of the interface. I w
neglect all such modes here, since they are more quic
damped than the slow translational modes and are not im
tant to the dynamics on the scaleR. Thus, we can solve the
Cahn-Hilliard part of the eigenvalue equation~3.8! by using
the variational theorem with a trial function corresponding
the translational deformation of interest.

The translational modes can be characterized by their
gular dependences. Any general perturbation of the conc
tration field can be expanded as a Fourier series inu:

f~r ,u!5(
m

eimufm~r !, ~3.13!

wherefm(r ) is the function necessary to translate the int
face by a small amountdr in the r̂ direction @the functional
form of the fm(r ) will be calculated below in Sec. IV A#.
The Cahn-Hilliard part of the eigenvalue equation can th
be rewritten as

vmfm~r !5Gm~r !Fm~r !fm~r !, ~3.14!

where the operators are

Gm52
1

2

d2

dr2
2

1

2r

d

dr
1

m2

2r 2
1

1

2
k2, ~3.15a!

Fm52
1

2

d2

dr2
2

1

2r

d

dr
1

m2

2r 2
1

1

2
k213fs

221.

~3.15b!

Each modefm(r )eimu corresponds to a different geometric
perturbation mode of the cylinder. In the absence of the
ternal shear flow, the cylindrical domain will be unstable
the axisymmetric,m50 varicose mode as discussed in t
Introduction~see Fig. 1!. We will see below that them51
mode shown in Fig. 3 is an exact solution to Eq.~3.9! for
k50. At k50, it simply corresponds to a uniform translatio
of the entire cylinder and is thus marginally stable with
genvaluev1(k50)50. We might anticipate that the cylin
der will be stable to higher modes inm as well. Note that the
shear flow term in Eq.~3.8! is proportional to cosu, so this
term should have the effect of mixing modes with differe
values ofm.
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Now consider the full eigenvalue equation, Eq.~3.8!. We
are interested in the stability of perturbations characteri
by the variousu-dependent translational modes. The fun
tions fm(r )eimu1 ikx are approximate eigenvectors of E
~3.9!. To solve the full equation we adopt an approximati
similar to ‘‘tight-binding’’ or k•p approximations used in
solid-state physics. We assume the translational modes
good basis states for the full problem and write Eq.~3.8! as
a matrix equation in this basis. We can truncate the matri
only include a finite number of statesm and then diagonalize
the matrix to find the stability eigenvalues. This is va
when the two hydrodynamic terms are small enough t
they only cause mixing among them states included in the
basis; they must be small relative to the distance to the n
higher eigenvalue not included. Also, the shear flow m
satisfy S,1 so that it is reasonable to only consider t
translational deformation modes. In the strong-shear reg
S.1 (ġtj.1) the shear flow might couple to other mod
that we have neglected, which alter the width or shape of
interfacial profile itself, since these modes only damp out
a time scale of roughlytj . Note that the term containing
v r(r ,u) in Eq. ~3.8! depends onf through the hydrodynamic
equation~3.4!. So for each modem we can solve Eq.~3.4!
for v r(r ,u), assuming thatf(r ,u) is given by the approxi-
mate basis functionfm(r )eimu. In general, the resulting ve
locity field can then also be expanded as a Fourier se
Denoting byvm the solution forv obtained from substituting
Eq. ~3.7! andf(r ,u)5fm(r )eimu into Eq. ~3.4!, we can ex-
pand

vm~r ,u!5(
n

einuvnm~r !. ~3.16!

The u dependence ofv will not necessarily be the same a
that of fm , so in general the coefficientsvnm(r ) in the sum
will be nonzero even fornÞm.

To obtain the effective matrix equation corresponding
Eq. ~3.8!, we writef(r ,u) as a vector
d
-

re

to

t

xt
t

e

e
n

s.

f~r ,u!5S e0f0~r !

e1f1~r !eiu

e2f2~r !e2iu

A
D

and multiply on the left in Eq.~3.8! by the corresponding
conjugate vector. Here theem are the amplitudes of the sma
perturbationsfm . Recall that the conjugate functionf̃ is
defined byGf̃5f so it satisfies the Poisson equation

2
1

2
¹2f̃5f. ~3.17!

We can expandf̃ in the same way asf so that

f̃~r ,u,x,t !5(
m

f̃m~r !eimu1 ikxe2vt,

in which caseGmf̃m5fm . We can easily solve forf̃m(r )
using the Green’s function for the Laplacian in cylindric
coordinates. The result is

f̃m~r !5E
0

`

r 8dr82Km~kr.!I m~kr,!fm~r 8!, ~3.18!

wherer , (r .) indicates the lesser~greater! of r andr 8, and
Km ,I m are the modified Bessel functions. Then Eq.~3.8!
becomes, after multiplying on the left by

f̃~r ,u!* 5„f̃0~r ! f̃1~r !e2 iu f̃2~r !e22iu
•••…

and integrating over allu,
S ~f̃0,f0!v 0 0

0 ~f̃1,f1!v 0 •••

0 0 ~f̃2,f2!v

A
D S e0

e1

e2

A
D

5S ~f̃0 ,v r ,00fs8!1~f0 ,F0f0! S f̃0 ,
1

2
ikusf11v r ,01fs8D 0

S f̃1 ,
1

2
ikusf01v r ,10fs8D ~f̃1 ,v r ,11fs8!1~f1 ,F1f1! S f̃1 ,

1

2
ikusf21v r ,12fs8D •••

0 S f̃2 ,
1

2
ikusf11v r ,21fs8D ~f̃2 ,v r ,22fs8!1~f2 ,F2f2!

A

D S e0

e1

e2

A
D . ~3.19!
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Solving this equation gives approximate stability eigenval
v(k) for the cylinder in the shear flow. We have used t
definition Gmf̃m5fm ; the diagonal diffusive terms are the
exactly the variational expression~3.12!. The shear terms
involving the stationary velocityus}S are completely off-
diagonal, so they will indeed have the effect of mixing t
modes. We will find in Sec. IV C that the off-diagonal el
ments involvingv only mix modes that differ by61 as
written in Eq. ~3.19! and that they are also directly propo
tional to the shear rateS. Thus in the absence of the she
flow, S50, the matrix is completely diagonal and them
modes are independent, with stability eigenvalues

vm5
~f̃m ,v r ,mfs8!1~fm ,Fmfm!

~f̃m ,fm!

[vm,h1vm,d , S50. ~3.20!

These zero-shear stability eigenvalues are the sum of
terms, one due to hydrodynamic transport in the system
the other due to diffusive transport. Solving Eq.~3.19! for
nonzero shear rates requires truncating the matrix at s
modem; since we expect only them50 mode to be~possi-
bly! unstable, we might anticipate that only a few of t
higher modes are needed to investigate the behavior of
m50 mode under shear.

To summarize the results of this section, the equation
motion were first linearized in the small perturbationsf and
v and expressed parametrically in terms of the wave num
k. The perturbations of the cylinder of interest here,
translational modes, were characterized by their depend
on u. A variational expression was introduced for the diff
sive part of the problem, and the eigenvalue equation for
full problem was written as a matrix equation in the basis
them translation modes. In the remaining sections I calcul
the various matrix elements in Eq.~3.19!, which requires
solving the hydrodynamic equation for the perturbed veloc
field v, and then solve the matrix equation itself and exam
the results for various parameters of interest.

IV. MATRIX ELEMENTS AND RESULTS
WITHOUT SHEAR

A. Diffusive contribution

We begin by calculating the diffusive contribution to th
matrix elementsvm,d as defined in Eq.~3.20!. We need to
determine ther dependence of the basis functionsfm . For
v r50 andk50, translating the entire cylindrical interface b
an amountdr , fs(r1dr )5fs(r )1¹fs•dr , requires add-
ing the function

¹fs5fs8 r̂5fs8~r !~ ŷ cosu1 ẑ sinu! ~4.1!

to the original interfacial profile. But the translated interfac
and therefore¹fs , should also be an exact solution of E
~3.14!. We can verify this by differentiating Eq.~2.6! for the
stationary solutionfs with respect tor :
s

o
nd

e

he

of

er
e
ce

e
f
e

y
e

,

2
1

2

d3fs

dr3
2

1

2r

d2fs

dr2
1

1

2r 2

dfs

dr
2

dfs

dr
13fs

2dfs

dr
50.

~4.2!

But this is simply equivalent to

Fm51fs850, ~4.3!

so f1(r )[fs8(r ) is an exact eigenfunction ofG1F1 for k
50, with eigenvaluev150. We can exploit this solution to
approximateFmfm for generalm. SinceR@1 (R@j) and
since¹2f is only significant near the interface atr 5R, we
can in general replace the termm2/2r 2 by m2/2R2 in the
expression forFm @Eq. ~3.15b!#. But then we would expec
all m modes to have roughly the same radial dependenc
the m51 mode, so we can approximate

Fmfm'Fmfs85Fm51fs81S m2

2r 2
2

1

2r 2D fs8 . ~4.4!

For nonzerok, Fm51fs85 1
2 k2fs8 , so this gives

Fmfm'S 1

2
k21

m221

2r 2 D fs8 . ~4.5!

From Eq. ~3.20! the diffusive part of the diagonal matri
elementvm is then

vm,d>
1

~f̃m ,fm!
E

0

`

r dr fmS 1

2
k21

m221

2r 2 D fs8 . ~4.6!

We are assuming we can approximatefs8 by the flat interface
form Eq. ~2.7! so fs8>sech2(r 2R). Since all modes have
the same radial dependence, we setfm(r )5fs8(r ) in the
denominator as well, which gives

vm,d>
1

„f̃m~r !,sech2~r 2R!…

3E
0

`

drS 1

2
k2r 1

m221

2r D sech4~r 2R!, ~4.7!

f̃m~r !5E
0

`

r 8dr82Km~kr.!I m~kr,!sech2~r 82R!.

~4.8!

The diffusive contribution tov has thus been reduced t
quadrature.

Equations~4.7! and ~4.8! are integrable numerically an
are valid for diffuse interfaces of widthj. However, quali-
tatively the results are the same for sharp interfaces, in wh
case the result can be expressed in closed form. The ea
way to take the sharp interface limit is to take

sech2~r 2R!→2d~r 2R!,

sech4~r 2R!→
4

3
d~r 2R!, ~4.9!
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in all of the integrals, whered(r 2R) is the Dirac delta func-
tion. @This is equivalent to using the step-function profile E
~2.8!.# The prefactors maintain the correct normalizations,
we are taking the width of the interfacej→0 while keeping
the surface tensions constant. Thed functions then allow
easy evaluation of the necessary integrals. The conju
function f̃m is

f̃m~r !>H 4RKm~kR!I m~kr !, r ,R,

4RKm~kr !I m~kR!, r .R,
~4.10!

so the normalization integral is

~f̃m ,fm!>E
0

`

r dr f̃m~r !2d~r 2R!

>8R2Km~kR!I m~kR!. ~4.11!

Substituting into Eq.~4.7! we find that the diffusive term in
the stability eigenvalue is

vm,d5
k2R21m221

12R3Km~kR!I m~kR!
. ~4.12!

In the original variables, the dispersion relation is

Ãm,dtj5
k2R 21m221

12~R 3/j3!Km~kR!I m~kR!
, ~4.13!

which we note can be written independently ofj as

Ãm,d5
Ms

4fe
2

k2R 21m221

R 3Km~kR!I m~kR!
. ~4.14!

We immediately see that the axisymmetricm50 mode is
thermodynamically unstable forkR,1, i.e., for wavelengths
longer than the circumference of the cylinder, whereas
m51 translation mode is stable for allk as predicted. Figure
4 shows the dimensionless part of the first three modes,

Vm,d~kR![
k2R 21m221

12Km~kR!I m~kR!
, ~4.15!

FIG. 4. Dispersion relations in no shear,V0,d ~solid curve!, V1,d

~dashed curve!, andV2,d ~dotted curve!.
.
o

te

e

where Ãm,dtj5j3Vm,d(kR)/R 3. These are the diffusive
contributions to the stability eigenvalues in the absence
the shear flow.

Figure 5 shows the difference between using finite wid
interfaces in Eq.~4.7! and using the sharp interface expre
sion ~4.13! for a cylinder of radiusR54j, for the lowest
two eigenvalues,Ã0,d andÃ1,d . The finite width curve is at
most 15% more negative than the sharp interface curve
Ã0,d , and 31% larger than the sharp interface curve
Ã1,d , at kR50.5 ~near the maximally unstable varicos
mode!. The shapes of the curves are qualitatively the sam
both cases. AsR increases and the step-function approxim
tion for the interfacial profile becomes better, the differen
between the curves grows smaller. ForR56j the differ-
ences are reduced to roughly 9% and 20%, respectiv
Thus the qualitative behavior should remain unchanged f
domain with sharp interfaces, but detailed comparison w
experimental or simulational data may require including
effect of having diffuse interfaces.

B. Velocity field, equal viscosities

Next consider the matrix elements involving the perturb
velocity field v. This section will be limited to the specia
case in which the viscosities of the two phases are eq
h i5ho5h. Then it will turn out that the velocity matrix
elements are completely diagonal, even with the shear fl
and it will be possible to obtain closed form expressions
vmm(r )[vm(r ).

Recall that the perturbed velocity fieldv satisfies Eqs.
~3.4! and ~3.5!:

05¹2v2
1

h
¹P1

1

h
fs8Ff r̂ , ~4.16!

05¹•v, ~4.17!

whereF52 1
2 ¹21Ws . To solve forv, we follow a general

procedure from Happel and Brenner@31#. Taking the diver-
gence of Eq.~4.16! and applying the incompressibility con
dition ~4.17! leads to a Poisson equation for the pressureP:

¹2P5¹•~fs8Ff r̂ !. ~4.18!

FIG. 5. Corrections due to a finite width interface (1 symbols!
to the eigenvalues for sharp interfacesÃ0,d ~solid curve! andÃ1,d

~dashed curve! for R54j.
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Expanding the pressure asP5Pm(r )eimu1 ikxe2vt we find
that Pm(r ) satisfies

Pm9 1
1

r
Pm8 2

m2

r 2
Pm2k2Pm5

1

r

d

dr
~rfs8Fmfm!,

~4.19!

the homogeneous part of which is simply the modifi
Bessel equation. Using a Green’s function and requir
Pm(r ) to be finite atr 50 and to vanish asr→`, we have

Pm~r !52E
0

`

r 8dr8Km~kr.!I m~kr,!
1

r 8

d

dr8

3@r 8fs8Fmfm~r 8!#

>E
0

`

dr8
d

dr8
@Km~kr.!I m~kr,!#

3S 1

2
k2r 81

m221

2r 8
D sech4~r 82R!, ~4.20!

where we have used Eq.~4.5!. Substituting this expressio
for P into Eq. ~4.16! gives a vector Poisson equation forv.

In cylindrical coordinates, ther and u components ofv
are coupled:

¹2v r2
2

r 2

]vu

]u
2

v r

r 2
5

1

h

]P

]r
2

1

h
fs8Ff, ~4.21a!

¹2vu1
2

r 2

]v r

]u
2

vu

r 2
5

1

hr

]P

]u
. ~4.21b!

We can solve for both together by writing

v r ,m5%m~r !eimueikx2vt, ~4.22a!
g

vu,m52 iqm~r !eimueikx2vt, ~4.22b!

so thatvu has a phase shift relative tov r . Equations~4.21!
then become

%m9 1
1

r
%m8 2S k21

m211

r 2 D%m2
2m

r 2
qm

5
1

h
Pm8 2

1

h
fs8Fmfm , ~4.23a!

qm9 1
1

r
qm8 2S k21

m211

r 2 D qm2
2m

r 2
%m52

m

hr
Pm .

~4.23b!

Adding these together we find

~%m1qm!91
1

r
~%m1qm!82S k21

~m11!2

r 2 D ~%m1qm!

5
1

h
Pm8 2

m

hr
Pm2

1

h
fs8Fmfm .

The homogeneous part of this equation is the modifi
Bessel equation, with general solutionsI m11(kr) and
Km11(kr). Similarly subtracting gives

~%m2qm!91
1

r
~%m2qm!82S k21

~m21!2

r 2 D ~%m2qm!

5
1

h
Pm8 1

m

hr
Pm2

1

h
fs8Fmfm ,

so now the homogeneous part of the equation has solut
I m21(kr) and Km21(kr). We can thus construct exac
Green’s functions for the combinations%m1qm and %m
2qm . The solutions to the inhomogeneous equations
therefore
f
s.
.

%m~r !1qm~r !52E
0

`

r 8dr8Km11~kr.!I m11~kr,!S 1

h
Pm8 ~r 8!2

m

hr 8
Pm~r 8!2

1

h
fs8Fmfm~r 8!D , ~4.24a!

%m~r !2qm~r !52E
0

`

r 8dr8Km21~kr.!I m21~kr,!S 1

h
Pm8 ~r 8!1

m

hr 8
Pm~r 8!2

1

h
fs8Fmfm~r 8!D . ~4.24b!

All of the functions in these integrals are known, so we have reduced the solution forv r ,m(r ) to quadrature. For the case o
equal viscosities, we could therefore again integrate numerically to find the matrix elements for finite width interface

Instead I will proceed with the sharp interface approximation Eq.~4.9!. In this limit the velocity matrix elements in Eq
~3.19!, divided by the normalization integrals, are

vm,h>
1

~f̃m ,fm!
E

0

`

dr r f̃m~r !v r ,m~r !2d~r 2R!5v r ,m~R!. ~4.25!

Thusvm,h is given not surprisingly by the radial velocity at the linearized position of the interface,v r ,m evaluated atr 5R.
From Eq.~4.20! we find the pressurePm is given by

Pm~r !5
2~k2R21m221!

3R H kKm8 ~kR!I m~kr !, r ,R,

kKm~kr !I m8 ~kR!, r .R.
~4.26!
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Substituting into Eq.~4.24!, solving forv r , and performing some reductions using Bessel function identities, we find

vm,h5
2~k2R21m221!

3hR H 1

2
~m11!Km11~q!I m11~q!2

1

2
~m21!Km21~q!I m21~q!1

1

2
q@Km~q!I m11~q!2Km21~q!I m~q!#

1
1

8
q2@Km11~q!I m11~q!2Km21~q!I m21~q!#@Km21~q!I m11~q!2Km11~q!I m21~q!#J , ~4.27!
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where we have setq[kR for convenience. These give th
hydrodynamic part of the stability eigenvalues in the abse
of the shear flow. Since I have taken the sharp interface li
this part of the calculation has been completely decoup
from the dynamics of the concentration fieldf; Eq. ~4.25! is
equivalent to the usual kinematic condition in hydrodynam
stability calculations. Thus the result Eq.~4.27! is an exact,
rather than approximate, solution for the hydrodynamic s
bility of a cylinder of one fluid immersed in a second immi
cible one. It can therefore be compared directly with pre
ous results. For the varicose modem50 we obtain the
stability eigenvalue

v0,h~k!5
2~k2R221!

3hR FK1~q!I 1~q!1
1

2
qK0~q!I 1~q!

2
1

2
qK1~q!I 0~q!G . ~4.28!

Putting this back in dimensional form we have

Ã0,h~k!5
s~q221!

nR FK1~q!I 1~q!1
1

2
qK0~q!I 1~q!

2
1

2
qK1~q!I 0~q!G . ~4.29!

This expression is the same as that found by Stone and B
ner@32# and may be obtained from Tomotika’s general res
for the dispersion relation of the viscous Rayleigh instabili
in the limit of equal viscosities between the two liquids@14#.

Note each mode in Eq.~4.27! can be written in the origi-
nal variables asÃm,h5sVm,h(kR)/nR, whereVm,h is di-
mensionless. This dimensionless part of the dispersion r

FIG. 6. Stability eigenvaluesV0,h ~solid curve!, V1,h ~dashed
curve!, andV2,h ~dotted curve! for m51 in the absence of shear.
e
it,
d

c

-

-

n-
lt
,

la-

tion is graphed in Fig. 6 for the first three modes. Again t
varicose mode is unstable for allk,1/R, whereas the highe
modes are stable for allk.

C. Velocity field, general viscosity ratio

For the case of general viscosity ratiom, it is much more
difficult to solve the hydrodynamic equation with diffuse in
terfaces. To do so requires writing the viscosity as a smo
function off that changes from the value inside the cylind
h i to the value outsideho in a continuous way, which intro-
duces extra terms into the original differential equation~2.3!.
Thus in this section I will start with sharp interfaces from t
beginning. It is then more sensible to follow a different a
proach to solving the hydrodynamic equation. For sharp
terfaces, the term coupling the total concentrationF to the
total velocityu in Eq. ~2.3! becomes@33#

“F
dF

dF
→shd~z!n̂,

whereh is the curvature of the interface located atz(r )50
andn̂ is a unit vector normal to the interface. This is equiv
lent to the usual boundary condition on the jump in the n
mal stress across a fluid interface. Instead of including
coupling term in the hydrodynamic equation, we can ju
solve the usual creeping flow equations for the perturb
velocity fieldvi inside andvo outside the cylinder separately
and apply the appropriate boundary conditions at the in
face in the usual manner. In each regionv satisfies

¹2v5
1

h
¹P, 05“•v, ~4.30!

and the pressure simply satisfies the Laplace equation,

¹2P50. ~4.31!

The location of the interface of course depends on the p
turbation modefm in question; sincefm(r ) is now a step
function we only need to know the location of the ste
which is given by

r 5R2eeimu1 ikx ~4.32!

for each modem, where e is the amplitude of the smal
perturbation.

The solutions to Eqs.~4.30! and~4.31! are straightforward
so the details are given in the Appendix. The general so
tions are found in terms of modified Bessel functions; t
exact solutions are then found by applying the boundary c
ditions and solving numerically for the unknown constan
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The results are the coefficientsvnm(r ) in the expansion
~3.16!. As shown in the Appendix, the only nonzero coef
cients are the ones for whichn5m and n5m61 so Eq.
~3.19! is tridiagonal as written. As was shown in Eq.~4.25!,
the velocity matrix elements are then simply given by

„f̃n ,v r ,nm~r !fs8…

~f̃n ,fm!
5v r ,nm~r 5R!. ~4.33!

In the case of zero shear flow, only the diagonal matrix e
ments are nonzero and the hydrodynamic part of the stab
eigenvalues is thereforevm,h5v r ,mm(R). Again the results
here forS50 are decoupled fromf and are therefore exac
for two immiscible liquids.

I show in the Appendix that in the absence of the sh
flow the velocity matrix elements and hence the eigenval
are proportional to 1/hoR, just as in them51 case. Figures
7–9 show the dispersion relations for the dimensionless p
of the three lowest modes for different values ofm ~holding
ho constant!. The results for the varicosem50 mode are
again the same as those of Tomotika@14#. As the cylindrical
domain becomes less viscous relative to the backgroun
becomes more unstable and the wave number of maxim
instability kmax becomes smaller. Note that the damping r

FIG. 7. Stability eigenvalueV0,h for S50 at differentm: m
510 ~dashed curve!, m51 ~solid curve!, m50.1 ~dash-dot curve!,
m50.01 ~dotted curve!, andm50.001~long dashed curve!.

FIG. 8. Stability eigenvalueV1,h for S50 at differentm: m
510 ~dashed curve!, m51 ~solid curve!, m50.1 ~dash-dot curve!,
m50.01 ~dotted curve!, andm50.001~long dashed curve!.
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for the undulatorym51 mode depends less strongly onm.
From Fig. 9 we see that them52 mode depends only
weakly onkR.

Finally, in the Appendix the hydrodynamic equations a
solved analytically atk50, providing a check on the numer
cal results. The stability eigenvalues atk50 are diagonal
and independent of the shear rateS, Eq. ~A32!:

vm,h~k50!5
m

3hoR~m11!
, m>2, ~4.34!

with v0,h(k50)5v1,h(k50)50. Note that since the only
remaining off-diagonal elements in Eq.~3.19! vanish atk
50, this demonstrates that the cylinder is stable towa
x-independent deformations that would result in a noncir
lar cross section, even in the presence of the shear flow

D. Shear flow contribution

Finally we evaluate the off-diagonal shear flow matr
elements

1

2
ik

„f̃n ,us~r !fm…

~f̃n ,fm!
,

where we have divided by the normalization integral. Sin
we are assuming thatfm(r ) has the same radial dependen
for all m, we simply have in the sharp interface limit

1

2
ik

„f̃n ,us~r !fm…

~f̃n ,fm!
5

ik

2~f̃n ,fm!
E

0

`

dr rus~r !f̃nfm

>
ik

2~f̃n ,fm!
E

0

`

dr rus~r !f̃n2d~r 2R!

5
1

2
ikus~R!5

ikRS

m11
. ~4.35!

Thus each off-diagonal element is the same independen
m.

FIG. 9. Stability eigenvalueV2,h for S50 at differentm: m
510 ~dashed curve!, m51 ~solid curve!, m50.1 ~dash-dot curve!,
m50.01 ~dotted curve!, andm50.001~long dashed curve!.
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V. RESULTS WITH SHEAR

With all the necessary matrix elements in hand, we c
now solve for the stability eigenvalues in shear by diagon
izing Eq. ~3.19!. To do so requires truncating the matrix
some point. Since the off-diagonal matrix elements are
proportional toS, we can assume that any perturbation th
damps out more quickly than the time associated with
shear flow can be ignored. Thus we only need to inclu
modes whose damping rates are less than or of the ord
the applied shear rate. For comparison purposes, the va
of the stability eigenvalues atk50 give good estimates o
the damping rates of highm modes without having to calcu
late the full dispersion relations.

In this paper it will be sufficient to only include the firs
three modes, in which case the matrix equation~3.19! be-
comes a 333 secular equation forv:

U v02v
ikRS

m11
1 iSv01 0

ikRS

m11
1 iSv10 v12v

ikRS

m11
1 iSv12

0
ikRS

m11
1 iSv21 v22v

U50,

~5.1!

where I have pulled a factor ofiS out of the off-diagonal
velocity matrix elements,vnm,r(R)[ iSvnm . This leads to a
cubic characteristic equation for the stability eigenvalu
v(k). Since the characteristic equation has real coefficie
the roots can be found analytically; there will be either th
real roots or one real root and a complex conjugate pair

Recall that in the absence of the shear flow, the stab
eigenvalues are simply given by the sum of the diffusive a
hydrodynamic terms as in Eq.~3.20!:

vm5vm,d1vm,h , S50.

I showed in Sec. IV A and Sec. IV C that these two ter
scale differently with the parameters of the system, w
vm,d5Vm,d(kR)/R3 and vm,h5Vm,h(kR,m)/hoR. The
relative magnitude of these two terms depends on the dim
sionless viscosity parameterho52jno/3stj and on the ra-
dius of the cylinder. For sufficiently viscous and/or sm

FIG. 10. Stability eigenvalues Re@V0,h(S)# ~solid line! and
Re@V1,h(S)# ~dashed line! for m51 at S50.1.
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cylindrical domains, the diffusive term will dominate
whereas for less viscous and/or large cylindrical doma
the hydrodynamic term dominates. In the following, I fir
examine the stability eigenvalues in the two extreme limits
which the hydrodynamic terms or the diffusive terms can
disregarded entirely. I will then present some results for
perimentally realistic parameter values.

A. Stabilization of the Rayleigh instability

First consider Eq.~5.1! in the limit that the diffusive terms
in the diagonal elements are negligible, so thatvm5vm,h .
Physically this corresponds to examining the effect of
shear flow on the purely hydrodynamic Rayleigh instabili
Since the diagonal matrix elementsvm,h scale as 1/hoR
while the off-diagonal elements do not depend onho or R,
the stability eigenvaluesv will also scale with 1/hoR. De-
note the eigenvalues found by diagonalizing Eq.~5.1! with
the shear flow present by

v j ,h~S!5
1

hoR
V j ,h~kR,m,S!, ~5.2!

where the indexj refers to the order of the new eigenvalue
v0(S),v1(S), . . . . Returning to the original variables
this relation is simply

Ã j ,h~S!5
s

noR
V j ,h~kR,m,S!. ~5.3!

Sinces/noR has units of inverse time, we can measure
shear rateġ just as well in these units as in units of 1/tj , so
for the rest of this section I will takeS[n0Rġ/s.

We start by considering the equal viscosity case,m51.
Figures 10–12 show the real part of the dimensionless
persion relationsV j ,h(kR,1,S) for the first two stability ei-
genvalues in shear flow at various shear rates~the third mode
was included in the calculation but is not a particularly i
teresting function ofS). For some values ofk the lowest two
modesv0,h(S) andv1,h(S) are a complex conjugate pair an
so they show up as a single curve in Figs. 10–12; for
regions ink for which there are two curves shown, the tw
eigenvalues are both completely real. We see that at smak

FIG. 11. Stability eigenvalues Re@V0,h(S)# ~solid line! and
Re@V1,h(S)# ~dashed line! for m51 at the critical shear rateSc

50.160.
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where there is a complex conjugate pair, the perturbati
are traveling waves with an overall damping rate. At lo
shear rates the mode with the lowest eigenvaluev0,h(S) is
still unstable, but the window of wave numbers over whi
v0,h(S),0 becomes smaller asS increases. At some critica
shear rateSc the minimum inv0,h(S) crosses zero, at a criti
cal wave numberkc5kc /R. Above this critical shear rate
the instability is gone—the initially unstable varicose mo
has been stabilized by the applied shear flow, by being mi
with the higher modes.

Clearly, the critical shear rateġc must have the sam
dependence onno, s, andR as the stability eigenvalues:

ġc5
sSc~m!

noR
. ~5.4!

Thus the critical shear rate is a monotonically decreas
function of the radius of the cylinder and the magnitude
the outside viscosity; the smaller the cylinder or the le
viscous the fluids are overall, the faster the growth of
varicose mode and so the critical shear rate must be fast
well for stabilization to occur. Inverting Eq.~5.4!, we see
that at a fixed shear rate, there is a critical radiusRc

5ġno/sS(m) above which the cylinder is stable and belo
which it is unstable. Thus if instead of an infinite cylinder w
had a finite long cylindrical drop that was being stretched
the flow, initially small capillary disturbances on the dro
would be suppressed by the flow, but as the drop thinne
a radius smaller thanRc the disturbances would start to gro
and the drop would break up. Note thatSc is considerably
larger than the magnitudes of bothV0,h(S) andV1,h(S) at all
kR,1, so the shear rate must be faster than the rate
growth of the instability to stabilize it.

The qualitative picture here is that the shear flow adve
opposite sides of the cylinder relative to each other so
the special axisymmetric, varicose perturbation no longer
ists long enough to be unstable. This picture is borne ou
the eigenvectors corresponding to the eigenvalues show
Figs. 10–12. Figure 13 shows a cross section of the eig
vector corresponding to the lowest eigenvalue atkmaxR
50.562 19~where kmax is the wave number of maximum
instability in zero shear! andS50.1, when the lowest mod
is still unstable; Fig. 14 shows the same eigenvector aS
50.18, which is above the critical shear rate and theref

FIG. 12. Stability eigenvalues Re@V0,h(S)# ~solid line! and
Re@V1,h(S)# ~dashed line! for m51 at S50.18.
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stable. As the shear rate increases, the original varicose m
becomes more distorted as it is mixed with the other mod

Next we explore the effect of the viscosity ratio betwe
the two phases,m. When the viscosities of the two phase
are equal, above the critical shear rate the cylinder is sta
against perturbations at all wavelengths as we see in Fig
This is not the case for allm. For generalm, the shear flow
does stabilize the varicose mode around the main instab
at kmax, but for somem there is a residual instability left a
small wave numbers~long wavelengths!. An example form
50.25 is shown in Figs. 15 and 16. Figure 15 shows
lowest two stability eigenvalues at a low shear rate, when
lowest modev0,h(S) is still unstable near the original max
mally unstable wave numberkmaxR.0.59. We see that ther
is an additional unstable region at smallk, separate from the
main instability. This long-wavelength instability remains a
ter the main instability has been stabilized by the shear fl
as shown in Fig. 16. The physical significance of this
sidual instability will be discussed further in Sec. V C;
does mean that the cylinder is still unstable to very lon
wavelength perturbations. No residual instability was fou
for 0.8&m&1.0; asm is either increased or decreased aw
from this range, a small instability appears smoothly fro
k50 and extends over increasingly largek as m becomes

FIG. 13. Real part of the eigenvector corresponding toV0,h at
S50.1, in theu50 plane.

FIG. 14. Real part of the eigenvector corresponding toV0,h at
S50.18, in theu50 plane.
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3508 PRE 58AMALIE FRISCHKNECHT
correspondingly smaller than about 0.8 or larger than ab
1.0.

Nevertheless we can calculate the critical shear rate
quired to stabilize the original maximally unstable mode,
a function ofm. The result is shown in Fig. 17. The grap
only includes values in the range 0.04<m<2.4 since for
values ofm outside this range, the critical shear rateSc be-
comes larger than the damping rate of thej 52 mode; to
extend the range ofm would therefore require including th
j 53 mode and higher asSc increased.@From Eq.~4.34!, we
find V2,h(k50,m50.04)50.65, V3,h(k50,m50.04)
50.98, V2,h(k50,m52.4)50.20, and V3,h(k50,m52.4)
50.29 so the range in Fig. 17 is reasonable.# Sc(m) has a
minimum nearm50.5 and rises on either side, so that as
domain becomes either more or less viscous than about
the outside viscosity, it requires a higher shear rate to st
lize it. The rather sharp bend nearm50.1 is due to the fact
that the maximally unstable varicose mode with growth r
V0,h(kmaxR,m,S50) moves to lower wave numbers asm de-
creases~see Fig. 7!, while the m51 mode in particular
changes less withm ~Fig. 8!. The magnitudes of the two
eigenvalues both increase as the inner viscosity decrea
but the growth rate of them50 mode does so more quickl
and with a larger change in the dependence onkR. Thus as
m decreases the interaction between these two mo
changes in such a way as to result in the fairly sharp incre
in shear rate necessary for stabilization form,0.1.

FIG. 15. Stability eigenvalues Re@V0,h(S)# ~solid line! and
Re@V1,h(S)# ~dashed line! for m50.25 atS50.14.

FIG. 16. Stability eigenvalues Re@V0,h(S)# ~solid line! and
Re@V1,h(S)# ~dashed line! for m50.25 atS50.16.
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B. Stabilization of the thermodynamic instability

In the preceding subsection we saw that the hydro
namic Rayleigh instability can be partially or completely s
bilized by the shear flow, depending on the viscosity contr
between the two phases. The opposite limit is to consi
what happens when the fluids are so viscous that the hy
dynamic terms are negligible. Then the diagonal element
Eq. ~5.1! are justvm,d and the off-diagonal elements are th
ones from the imposed flowus . Figures 18 and 19 show th
dimensionless parts of the first two modes,V j ,d(S)
[v j ,d(S)R35Ã j ,d(S)tjR 3/j3, for two different shear rates
at m51. Here I have definedS* [SR3 so that the trivial
dependence onR can be factored out. Again asS* is in-
creased, the window of wave numbers for which the varic
mode is unstable becomes smaller. Also, the mode of m
mum instability moves to lowerk. Figure 20 shows all three
modes in shear for a rather high shear rate,S* 52. The vari-
cose mode has been mostly stabilized, with a small resid
instability at small wave numbers. Including the four
mode, j 53, allows us to raise the shear rate up to so
fraction of the magnitude of thej 54 mode,V4,d564. ~Note
that including thej 53 mode does not change the lower thr
modes, e.g., in Fig. 20 at all, since it is not mixed with the
at low shear rates.! The instability at small wave number
moves to smaller and smallerk asS* is increased above 2

FIG. 17. Critical shear rate as a function of viscosity ratiom.

FIG. 18. Real part of the dimensionless stability eigenvalu
V0,d(S) ~solid curve! and V1,d(S) ~dashed curve! at S* 50.1 and
m51.
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PRE 58 3509STABILITY OF CYLINDRICAL DOMAINS IN PHASE- . . .
towards 64, but seems pinned neark50 and never quite
disappears. The changes withS* occur more slowly asS* is
increased.

Thus when the diffusive terms dominate the behav
there is no well-defined critical shear rate for stabilization
all wave numbersk. Furthermore, unlike the case of th
Rayleigh instability analyzed above, the mode that is ma
mally unstable atS* 50 does not cross the axis at som
well-defined shear rate independently of the residual insta
ity at small wave number; instead the maximally unsta
mode just shifts withS* towards smallerk. We could, how-
ever, define a critical shear rate for stabilization at any giv
~small! wave numberkc ; in this case the ‘‘critical’’ shear
rate for stabilization will scale simply as

Sc~kc!}
m11

R3
, ~5.5!

since m only enters in the off-diagonal shear flow term
Once again the critical shear rate is a decreasing functio
the radiusR, so for a given shear rate small cylinders will b
unstable and large ones will be stable for wave numb
satisfyingk.kc .

FIG. 19. Real part of the dimensionless stability eigenval
V0,d(S) ~solid curve! and V1,d(S) ~dashed curve! at S* 50.4 and
m51.

FIG. 20. Real part of the dimensionless stability eigenval
V0,d(S) ~solid curve!, V1,d(S) ~dashed curve!, andV2,d(S) ~dotted
curve! at S* 52 andm51.
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C. Relation to experiments

In general the stability of the cylindrical domain will b
determined by both hydrodynamic and diffusive effects, d
pending on the system parameters. In this subsection I
first consider the parameters relevant to Hashimotoet al.’s
experimental system@10#. They have studied phase separ
tion under shear flow in a pseudobinary mixture of polybu
diene ~PB! and polystyrene~PS! in a common solvent of
dioctylphthalate~DOP!. They find a correlation lengthj
'O(1000) Å, a surface tension on the order of 1024 erg, a
diffusion constant on the order of 10210 cm2/s, the viscosity
of PB/DOP nPB'1.2 poise, and the viscosity of PS/DO
nPS'0.3 poise@34#. For comparison with my results, I wil
take as an example a viscosity ratio between the two ph
of m50.25 so the cylindrical domain consists of the le
viscous phase. For the possible range of values ofho in the
experiment,ho'0.06;0.2, the hydrodynamic terms in th
diagonal matrix elementsvm are significantly larger than the
diffusive terms at all reasonable values ofR. This is not
surprising; at the large length scale of the domains,R@j,
we would not necessarily expect the diffusive terms to
important. Thus in this case the results of Sec. V A ap
with negligible modification. The critical shear rate for st
bilization of the cylinder at mostk, for m50.25 andho

50.1, is

ġctj5
1.54

R
. ~5.6!

Since the theory only applies forR>3 or so@for smallerR,
Eq. ~2.7! is no longer a good approximation#, this shear rate
is in the weak-shear regime,ġtj,1, and is significantly
smaller than the shear rate necessary for formation of
string phase seen in the experiments. It is thus consistent
the long cylindrical domains seen experimentally are sta
since they are seen at shear rates that are well above
shear rate required for stabilization.

Figure 21 shows the stability eigenvalues well above
critical shear rate, atġtj51.5. Although this shear rate is i
the strong-shear regimeġtj.1 for which the theory may no
strictly be valid, it seems reasonable that the theory can
pushed into the strong-shear regime at the large length sc

s

s

FIG. 21. Stability eigenvalues Re@Ã0(S)# ~solid line!,

Re@Ã1(S)# ~dashed line!, and Re@Ã2(S)# ~dotted line! for ġtj

51.5, m50.25,h°50.1, andR54j.
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3510 PRE 58AMALIE FRISCHKNECHT
O(R) considered here~if in the strong-shear conditiontj is
replaced by the typical time scale for domain fluctuatio
then the theory is valid here!. For these particular paramete
values, Hashimotoet al. found that the length of the string
seen in the experiment was on the order of 300R. This
length could be explained by the residual instability at sm
wave numbers discussed in Sec. V A. The wavelength
maximum instability in Fig. 21 is approximatelyl52p/k
'250R, so the length of the strings seen experimenta
may be set by the residual long-wavelength varicose in
bility in the shear flow.

Next consider the case of near-critical binary fluids.
the critical point,m51 and h is a universal number; fo
near-critical fluids it has the same order of magnitude, so
take the critical valueh>0.7. For this value ofh, the diffu-
sive terms start to become noticeable at small radii, altho
they are still significantly smaller than the hydrodynam
terms at larger radii, e.g.,R.6 or so. Figure 22 shows th
varicosem50 mode without the shear flow, for the diffusiv
and hydrodynamic terms separately at the smallestR that is
reasonable in the theory. The diffusive terms do change
magnitude ofv0(S) and so will have a small quantitativ
effect on the results. The stabilization by the shear flow
again very similar to the purely hydrodynamic case as ill
trated in Figs. 10–12. However, even form51 there is now
once again a small residual instability at smallk due to the
diffusive part of the eigenvalues that persists at high sh
for the small radiusR53j. Note from Fig. 22 that at very
small k, uÃ0,du.uÃ0,hu, so it is not surprising that the sta
bility eigenvalues in shear resemble those of Fig. 20 at sm
k. Finally, the critical shear rate for stabilization of the ma
instability Sc no longer scales exactly with 1/R at smallR
due to the different scaling of the diffusive terms (vd
}1/R3), but the difference is small. Thus, for near-critic
binary fluids the effects of diffusive transport may be obse
able in stringlike domains for sufficiently thin strings.

VI. DISCUSSION

I have shown that shear flow can stabilize an isola
cylindrical domain in the two-phase state of a pha
separating binary fluid against varicose instabilities, by m
ing the varicose mode with the other nonaxisymmetric p
turbation modes of the cylinder. Essentially, the shear fl

FIG. 22. Varicose mode:Ã0,d ~solid line!, Ã0,h ~dotted line!,
and the totalÃ0 ~dashed line! for h50.7 andR53j (S50).
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distorts the varicose mode by convecting one side of
cylindrical interface with respect to the other, eliminating t
special axisymmetric, pinching character of the varico
mode that drove the instability. Both the hydrodynamic Ra
leigh instability and the thermodynamic, diffusive instabili
are suppressed by the shear flow, although there are res
instabilities at small wave numbers in the limit that the d
fusive terms dominate and also for viscosity ratiosm outside
the range 0.8&m&1.0. Other authors have considered t
effect of flows on the Rayleigh instability, but this is the fir
study focused on the effect of the nonaxisymmetric nature
shear flow on the Rayleigh instability.

Comparing with the experimental results of Hashimo
et al., I found that the mechanism presented here for stab
zation of the cylindrical domains is consistent with the sta
‘‘string’’ phase seen experimentally, and that the lengths
the strings may be set by the residual instabilty at long wa
lengths. However, it should be noted that the stability o
cylindrical domain in shear flow does not act as a criter
for the observed relationship between the shear rate and
radius of the domains seen in the string phase. The dom
in the string phase are formed through a dynamic proc
the observed radius is not a parameter of the system~as in
this calculation! but rather is determined through the se
organization process as the shear flow competes with co
ening in the phase-separating system. I have merely dem
strated a mechanism by which these macroscopically lo
cylindrical domains may be stabilized by the shear flow. A
though a few experiments have looked at the breakup of
stringlike domains after complete cessation of the shear fl
@12,35,36#, it would be interesting to do a careful experime
tal study of the shear rate at which the strings first begin
be unstable to see if the Rayleigh and/or thermodyna
varicose instabilities explored here are the main brea
mechanisms in these systems. If so, then the strings sh

be unstable below the critical shear rateġc found in this
paper.

The results presented here may also shed light on why
shear flow can halt the phase separation and result in a

namic steady state, even in the weak-shear regime,ġtj,1.
In a concentrated phase-separating fluid when the two ph
are both percolated so that the domains form a conne
bicontinuous pattern, the coarsening is dominated by cu
ture effects. Qualitatively we can think of a piece of th
interconnected structure as a cylinder of fluid immersed
the other phase. This cylinder is susceptible to the varic
instabilities considered here, and particularly to the Rayle
instability, which leads to breakup of the cylindrical regio
into spheres. Siggia@1# used this picture to explain the coar
ening rates seen in concentrated binary fluids. Since
shear flow suppresses these instabilities, one might ex
that it could stabilize an anisotropic, bicontinuous morph
ogy against further coarsening. For a given shear rate, w
the domains are relatively small they will be unstable a
will coarsen, but once the typical length scale has grown
the critical radius for stabilization by the shear flow,Rc(ġ),
the parts of the bicontinuous structure that are cylindrical a
aligned with the flow will no longer be unstable. This the
provides a mechanism for the creation of the nonequilibri



ra

on
A
o
flu
ity
rk

nc
.S

-

e
t

en

e

will
not

part
of

PRE 58 3511STABILITY OF CYLINDRICAL DOMAINS IN PHASE- . . .
dynamic steady state seen in concentrated phase-sepa
fluids in shear flow.
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APPENDIX: CALCULATION OF THE PERTURBED
VELOCITY FIELD

The perturbed velocity fieldvm corresponding to a pertur
bation of the interface given byr 5R2eeimu1 ikx must sat-
isfy the hydrodynamic equations

¹2v5
1

h
¹P, ~A1!

05¹•v, ~A2!

¹2P50. ~A3!

To solve for v we again follow Happel and Brenner@31#.
The velocity is expanded as in Eq.~3.16!,

vm~r ,u!5(
n

einuvnm~r !.

We will solve for each coefficientvnm separately so we tak
v}einu. We start by solving Eq.~A3! for the pressure. Le
P5Pn(r )einu1 ikx; then in general

Pn~r !5H p1I n~kr !, r ,R,

p2Kn~kr !, r .R,
~A4!

wherep1 and p2 are constants. The perturbed velocity th
satisfies the inhomogeneous Laplace equation~A1!, so the
solution will consist of a general solution to the homog
neous part plus a particular solution,v5vp1vg. Writing vx
5 ivx,n(r )einu1 ikx, thex component of Eq.~A1! is

ivx,n9 1
1

r
ivx,n8 2S k21

n2

r 2 D ivx,n5
ik

h
Pn~kr !. ~A5!
ting

.
n-
id

e
.

-

A particular solution is given by

vx,n
p 5H ic1

pI n~kr !1
ip1

2
krI n8~kr !, r ,R,

ic2
pKn~kr !1

ip2

2
krKn8~kr !, r .R,

~A6!

wherep1[p1 /h ik and p2[p2 /hok. The r and u compo-
nents ofv satisfy Eq.~4.21! without the extraf term; as-
suming they are expanded as in Eq.~4.22!, the particular
solutions to Eq.~A1! are

v r ,n
p 1 ivu,n

p 5H p1krI n118 ~kr !, r ,R,

p2krKn118 ~kr !, r ,R,
~A7!

v r ,n
p 2 ivu,n

p 5H p1krI n218 ~kr !, r ,R,

p2krKn218 ~kr !, r ,R
~A8!

~the solutions to the homogeneous part of the equation
be included in the general solution below and so are
needed here!. The components ofvp must satisfy the conti-
nuity equation~A2!:

dv r ,n
p

dr
1

v r ,n
p

r
1

in

r
vu,n

p 1 ikvx,n
p 50.

This determines the constantsc1
p5p1/2 andc2

p5p2/2.
Next we need a general solution to the homogeneous

of Eq. ~A1!. Again these are just the appropriate solutions
the Laplace equation:

vx,n
g 5H ic1I n~kr !, r ,R,

ic2Kn~kr !, r .R,
~A9!

v r ,n
g 1 ivu,n

g 5H a1I n11~kr !, r ,R,

b1Kn11~kr !, r .R,
~A10!

v r ,n
g 2 ivu,n

g 5H a2I n21~kr !, r ,R,

b2Kn21~kr !, r .R,
~A11!

and once again enforcing incompressibility givesc15(a1

1a2)/2 andc252(b11b2)/2. The result is a solution for
vn containing six unknown constants,a6, b6, andp1,2:
vx,n5
i

2 H ~a11a2!I n~kr !1p1@ I n~kr !1krI n8~kr !#, r ,R,

2~b11b2!Kn~kr !1p2@Kn~kr !1krKn8~kr !#, r .R,
~A12a!

v r ,n5
1

2 H a1I n11~kr !1a2I n21~kr !1p1kr@ I n118 ~kr !1I n218 ~kr !#, r ,R,

b1Kn11~kr !1b2Kn21~kr !2p2kr@Kn118 ~kr !1Kn218 ~kr !#, r .R,
~A12b!

vu,n5
2 i

2 H a1I n11~kr !2a2I n21~kr !1p1kr@ I n118 ~kr !2I n218 ~kr !#, r ,R,

b1Kn11~kr !2b2Kn21~kr !2p2kr@Kn118 ~kr !2Kn218 ~kr !#, r .R.
~A12c!
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These equations give the general solutions for the coefficientsvnm in Eq. ~3.16!.
It now remains to apply the appropriate boundary conditions at the interface to specify the remaining constants

boundary conditions will apply to the total velocity and stress fields. Lettinge denote the amplitude of the small perturbation
recall we have

u5us1ev,

P5Ps1eP,

P5Ps1es,

wherePs is the steady-state pressure,Ps the steady-state stress tensor, ands the perturbed stress tensor. From Eq.~2.11!, the
components of the steady-state stress tensor are

Pxr
s 5P rx

s 5
2Sh i

m11
cosu, ~A13!

Pxu
s 5Pux

s 55 2
2Sh i

m11
sinu, r ,R

2hoSsinu2
ho

r 2 S 2SR2

m11
2SR2D sinu, r .R.

~A14!
y

-

c

e

a
d

und

by

nti-
We see thatPxr
s is continuous across the interface butPxu

s

has a jump across the interface whenh iÞho. The difference
in the steady-state pressurePs across the interface is simpl
the Laplace pressure across a cylindrical interfaces/R,
which in our dimensionless variables~the dimensionless sur
face tension iss̄52/3) is

Ps
i 2Ps

o5
2

3R
. ~A15!

The boundary conditions are as follows@37#.
~i! Continuity of the velocity across the interface,ui

5uo.
~ii ! Continuity of the tangential stress across the interfa

P t
i5P t

o .
~iii ! Jump in the normal stress across the interface du

the mean curvatureH, Pn
i 2Pn

o54H/3 ~hereH is dimen-
sionless!.

To apply these boundary conditions we need to evalu
the appropriate components of the stress tensor on the
formed interface@23#. The location of the cylindrical inter-
face for modem is r 5R2eeimu1 ikx so the unit normal to
the interface is

n̂5 r̂1
im

R
eeimu1 ikxû1 ikeeimu1 ikxx̂1O~e2!. ~A16!

The hydrodynamic force on the perturbed surface isF5P

•n̂. To lowest order ine, the three components ofF are

Fr52Ps1es rr 1 ikeeimu1 ikxP rx
s , ~A17!

Fu5esur2
im

R
eeimu1 ikxPs1 ikeeimu1 ikxPux

s ,

~A18!
e,

to

te
e-

Fx5Pxr
s 1esxr1e

im

R
eimu1 ikxPxu

s 2 ikeeimu1 ikxPs .

~A19!

The normal stress is simply

Fn5F•n̂52Ps1es rr 12ikeeimu1 ikxP rx
s 1O~e2!.

~A20!

The two tangential components of the stress can be fo
from Ft5F2Fnn̂, giving

~Ft!u5esur1 ikeeimu1 ikxPux
s 1O~e2!, ~A21!

~Ft!x5Pxr
s 1esxr1

im

R
eeimu1 ikxPxu

s 1O~e2!.

~A22!

Finally, the mean curvatureH is

H52
1

2R
1e

k2R21m221

2R2
eimu1 ikx1O~e2!; ~A23!

the first term is the steady-state pressure difference given
Eq. ~A15!. Since the stationary velocityus already satisfies
the boundary conditions, the perturbed velocityv must sat-
isfy them separately. Denote the difference between qua
ties inside and outside the cylinder atr 5R by @@ f ##5 f i

2 f o. Then keeping in mind Eq.~A15! and thatPxr
s is con-

tinuous across the interface, from Eqs.~A20!–~A22! the six
boundary conditions become

@@v r ##5@@vu##5@@vx##50, ~A24a!

@@s rr ##5
2

3

k2R21m221

R2
eimu1 ikx, ~A24b!
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@@sur ##52@@ ikeimu1 ikxPux
s ##, ~A24c!

@@sxr##52F F im

R
eimu1 ikxPux

s G G . ~A24d!

SincePux
s depends onu, for a given perturbation modem of

the cylinder the solutionvm(r ,u) given by Eq.~3.16! will
contain more than one coefficientvnm . The perturbed stres
tensors depends only onv so we can write

s~r ,u,x!5(
n

sn~r !einu1 ikx. ~A25!

Noting that sinu5(eiu2e2iu)/2i and using Eq.~A14! at r
5R we can write

@@ ieimu1 ikxPux
s ##5S 2

Sh i

m11
1

Sho

m11D ~ei ~m11!u2ei ~m21!u!.

~A26!

Substituting in the full sums in Eq.~3.16! and Eq.~A25! and
matching terms with the sameu dependence in Eqs.~A24!
then gives for the boundary conditions on each coeffici
vnm

@@v r ,nm##5@@vu,nm##5@@vx,nm##50, ~A27a!

@@s rr ,nm##5
2

3

k2R21m221

R2
dmn , ~A27b!

@@sur ,nm##5~h i2ho!
kS

m11
~dn5m112dn5m21!,

~A27c!

@@sxr,nm##5~h i2ho!
mS

R~m11!
~dn5m112dn5m21!.

~A27d!

The right-hand side of the normal stress condition E
~A27b! is only nonzero forn5m, and the right-hand sides o
the tangential stress conditions Eqs.~A27c! and ~A27d! are
only nonzero forn5m61. This immediately shows that fo
a given perturbation modem of the interface, the only non
zero coefficientsvnm will be those for whichn5m, n5m
11, andn5m21. The eigenvalue equation~3.19! is thus
tridiagonal. To solve for each matrix elementv r ,nm(r 5R)
~see Sec. IV C!, we just substitute the appropriate gene
solution from Eqs.~A12! into the boundary conditions~A27!
and solve the resulting system of algebraic equations for
unknown constants. This is best done numerically given
algebra involved and was solved using a standard algori
@38#.

We can, however, see analytically how the matrix e
ments depend onho andR. First consider the boundary con
dition on the normal stress, Eq.~A27b!. Writing out the
stress tensor we have

@@s rr ,m##5F F2pm12h
]v r ,m

]r G G
52p1I m~kR!12h ikv r ,m8,i ~kR!1p2Km~kR!
t

.

l

e
e
m

-

22hokv r ,m8,o~kR!

5
2

3

k2R21m221

R2
, ~A28!

using Eq.~A4! for the pressure. The primes indicate diffe
entiation with respect to the argument ofv r , q5kR. Divid-
ing both sides byhok leaves

2p1mI m~q!12mv r ,m8,i ~q!1p2Km~q!22v r ,m8,o~q!

5
2

3hoR

q21m221

q
. ~A29!

The left-hand side now depends only on the six integrat
constants and on the dimensionless parametersq and m
~which remain dimensionless when written in the origin
variables!. For the tangential stress in Eq.~A27c!,

@@sur ,nm##5F FhS 1

R

]v r

]u
1

]vu

]r
2

vu

R D G G
5F FhS im

R
v r ,n~kR!1kvu,n8 ~kR!2

1

R
vu,n~kR! D G G

5~h i2ho!
kS

m11
~dn5m112dn5m21!.

Dividing both sides byho and multiplying byR gives

m@ imv r ,n
i ~q!1qvu,n8,i ~q!2vu,n

i ~q!#

2 imv r ,n
o ~q!2qvu,n8,o~q!1vu,n

o ~q!

5
m21

m11
qS~dn5m112dn5m21!. ~A30!

Similarly, from Eq.~A27d! we have

@@sxr,nm##5F FhS ]vx

]r
1

]v r

]x D G G
5@@h$kvx,n8 ~kR!1 ikv r ,n~kR!%##

5~h i2ho!
mS

R~m11!
~dn5m112dn5m21!.

Dividing by hok gives

m@vx,n8,i ~q!1 iv r ,n
i ~q!#2vx,n8,o~q!2 iv r ,n

o ~q!

5
m21

m11

mS

q
~dn5m112dn5m21!. ~A31!

Both Eq. ~A30! and Eq.~A31! depend only on the integra
tion constantsq, m, andS. In calculating the diagonal ve
locity matrix elementsv r ,mm(R), all right-hand sides are
zero except in the normal stress equation~A28!, so we see
that in this case the integration constants and thus the d
onal elements as well will scale as 1/hoR. For the off-
diagonal elements the only nonzero right-hand sides are f
the tangential stress conditions, so the off-diagonal elem
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will only depend onq, m, andS, and not onR or the mag-
nitude of the viscosities. In the absence of the shear flow
implies that the stability eigenvalues coming from the hyd
dynamic terms scale as 1/hoR.

Finally, Eqs.~A27! can be solved analytically atk50. In
this case the general solutions to the modified Bessel e
tion becomer n andr 2n, and also the left-hand sides of Eq
~A27c! and ~A27d! are zero atk50. This simplifies the al-
gebra considerably. Following the same procedure as
ys

l-

ch

th
ng

do
is
-

a-

t-

lined above, we find that the velocity matrix elements a
therefore the stability eigenvalues atk50 are diagonal and
independent of the shear rateS:

vm,h~k50!5
m

3hoR~m11!
, m>2, ~A32!

with v0,h(k50)5v1,h(k50)50.
e
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-
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