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Stability of cylindrical domains in phase-separating binary fluids in shear flow
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The stability of a long cylindrical domain in a phase-separating binary fluid in an external shear flow is
investigated by linear stability analysis. Using the coupled Cahn-Hilliard and Stokes equations, the stability
eigenvalues are derived analytically for long-wavelength perturbations, for arbitrary viscosity contrast between
the two phases. The shear flow is found to suppress and sometimes completely stabilize both the hydrodynamic
Rayleigh instability and the thermodynamic instability of the cylinder against varicose perturbations, by mixing
with nonaxisymmetric perturbations. The results are consistent with recent observations of a “string phase” in
phase-separating fluids in sheg81063-651X%98)15909-3

PACS numbes): 68.10—m, 64.75+g, 47.20.Hw, 47.20-k

. INTRODUCTION the order of the Taylor breakup sife~ o/ 7y, whereo is

. . . he surface tensiony the viscosity, andy the shear rate
Phgse-separatmg bmary fluids form complex p_atterns 0 5-8]. On the other hand, when the two phases are both
dgmam; after a ﬂue(;]ch |_nto thehtv\llo-ph.asg region gfbth ercolated the morphology is an anisotropic bicontinuous
P ast()a |afg;am. The ohmaln rr]norploog)]/c IS .etermflni Y Structure with apparently stable domains highly elongated
number of factors, such as the volume fractions of the tWoalong the flow direction. The anisotropy in these bicontinu-

phases, their viscositie:s, anq any externql forces applied Bus patterns is much larger than the aspect ratio of 2 or 3
the systeni1,2]. Of particular interest here is the effect of an seen for isolated droplef§]. Microscope observations have

externall shear flow applied tq the fluid. Th'e shear. flow comp J\vn that the domains can be elongated into long cylinders
petes with the phase-separation process, influencing the mar- . o .
10-12. In weak shear;yr,<1, these stringlike domains

phology and stability of the domains. Besides being a fasci il und ¢ break , db hi
nating problem in nonequilibrium physics, this question is oSt un ergo requent breakup, recpnnecuon, and branching,
whereas in the strong-shear regime the system forms a

practical significance because the final properties of indus; i hase” isti f icallv 1 lindri
trial materials involving binary fluids often depend on the SiNg pnase: consisting of macroscopically ‘ong cylindri-
domain morphology. cal domains aligned with the flow direction. These are sur-

At late times after a quench into an unstable state é)rising observations, since a long fluid cylinder at rest is
phase-separating binary fluid consists of domains of the twgNStablé against breaking up into spherical droplets via the

phases that coarsen with time. The presence of a shear flog?y/€igh capillary instability13,14. In the situation under

dramatically alters the kinetics of the phase separation. Thgonsidgr'atic;]n herr]e, theh.strr]ing is a (lddomlain of one phbasehim-
effects of the deformation by the shear flow depend on thénersed in the other, which we would also expect to be ther-
odynamically unstable since the cylinder could lower its

relations between the various time scales in the system. THE ; b heroidizing. Thus the sh f bi
characteristic time scale for the shear flow is just the invers§Urface energy by spheroidizing. Thus the shear flow stabi-

. S izes both the thermodynamic instability towards phase sepa-
shear rate, 3. When this time is shorter than the character- y y b P

i laxation fi £ th | tration fluctuati ration and the hydrodynamic instability of these highly elon-
istic relaxation time of thermal concentration fluctuations .o domains.

¢, y7¢>1, the system is in a “strong-shear” regime in ~ The goal of this paper is to explore the stabilization of
which the critical fluctations are modified by the flow. Con- cylindrical domains by an imposed shear flow. It is a sequel
versely, in the “weak-shear” regimeyr,<1 the critical to my previous work on the stabilization by shear flow of a
fluctuations are not affected by the flow. A third time scale,two-dimensional, lamellar domain in phase-separating binary
which will be crucial here, is associated with the domainsfluids[15]. In that paper it was shown that a lamellar domain
Clearly when the growth rate of the domains, or the growthat rest with diffuse interfaces is unstable towards a “vari-
rate of any instabilities associated with the domains, isose” instability. This instability is essentially a coarsening
smaller than the time associated with the flow, the shear floveffect and depends on the finite width of the interfaces; in the
will affect the morphology and stability of the domains. limit of mathematically sharp interfaces, a lamellar domain is
Of interest in this paper is the competition between thestable. An external shear flow stabilizes the lamellar domain
shear flow and the coarsening process. The shear flow tently advecting the top and bottom interfaces with respect to
to deform and elongate or fragment domains, whereas theach other so that they no longer can maintain the exact
thermodynamics favors coarsening to larger, isotropic dophase relation that produces the unstable varicose mode.
mains. This competition leads to the formation of a nonequi- The instability of a quiescent cylindrical domain of one
librium, dynamic steady state in which the coarsening isphase immersed in the other is somewhat different, owing to
stopped by the shear floy@-5]. When the viscosities of the the different dimensionality. There are two separate forces
two phases are similar and one phase forms a droplet phagdriving instability, one hydrodynamic and one thermody-
the steady state consists of somewhat deformed droplets afimic. Rayleigh13] and later Tomotikd14] analyzed the
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\ 2m/k : limit examined here. Russo and Stdd®] and Lowry and

Steen[20,21] found that axial flows can suppress capillary
D@@ instabilities on cylindrical interfaces. Most other studies in
the fluid dynamics literature concerning the effects of exter-
FIG. 1. Varicose instability of a fluid cylinder, of wavelength Nally imposed flows on long fluid cylinders have been in the
20l k. context of drop breakup. Several authors have considered the
linear stability of an infinitely long fluid cylinder in an elon-
instability of an infinitely long viscous fluid cylinder im- gational flow[22—-25. The flow field limits the growth of
mersed in an immiscible fluid to axisymmetric varicose per-any disturbance to a finite value so that there is no true in-
turbations, as shown in Fig. 1. When the wavelength of thestability, and the cylinder is stabilized. However, some dis-
varicosity is equal to or longer than the circumference of theurbances have time to grow transiently to a finite amplitude
cylinder, the perturbation is unstable and grows. This is beeomparable to the decreasing radius of the elongating cylin-
cause the higher curvature in the necks leads to a higheter, causing breakufeven though the disturbances do not
Laplace pressure there than in the bulges, which tends tgrow exponentially. Khakhar and Ottind24] extended the
drive fluid from the necks toward the bulges. Eventually theanalysis to general linear flows including shear flow, but
cylinder will break up into spherical droplets, with less total only in the case of small asymmetry, when the shear part of
surface energy than the original cylinder. However, even irthe flow is small compared to the stretching. In this paper |
the absence of fluid motiofe.g., consider a cylindrical do- will explore the opposite limit in which the stretching is
main in a solid binary alloy a cylindrical domain in the negligible but the asymmetry is large. Finally, Hinch and
two-phase state is still unstable. This is due to the GibbsAcrivos studied a finite, long slender drop in shear f{ds].
Thomson effect, in which the chemical potential depends o hey find steady-state solutions for the shape of the drop at
the curvaturd15,16. The higher curvature at the necks will all shear rates, but these equilibrium solutions are unstable
drive a diffusive flux towards the bulges, also leading toabove a critical shear rate. This is essentially due to the fact
instability. Both of these mechanisms are present even in thinat the ends of the drop are not completely aligned with the
limit that the interfaces are mathematically sharp. flow, so that at sufficiently high shear rates the drop cannot
In this paper | perform a linear stability analysis to inves-balance the straining of the ends and it extends transiently,
tigate the effect of an external shear flow on the stability of becoming progressively thinner. This does not happen for an
single infinitely long cylindrical domain, perfectly aligned infinitely long cylinder, as considered in this paper.
with the flow. | consider late times after a quench into the In Sec. Il | will describe the model equations of motion
two-phase region, when the fluid consists of domains of theised to describe the fluid. In Sec. lll, the equations of motion
two phases close to their equilibrium concentrations, sepaare linearized for small perturbations about a cylindrical do-
rated by well-defined interfaces. The formulation of themain. Approximate solutions can be found by writing the
problem allows in principle for diffuse interfaces with a fi- stability eigenvalue equation as a matrix equation in a trun-
nite width ¢ (when the viscosities of the two phases arecated set of “basis” states, corresponding to different per-
equa), but in practice results are much easier to obtain in thdurbation modes of the cylinder. The matrix elements are
limit of mathematically sharp interfaces and the correctiongcalculated in Sec. IV. We will see in Sec. V that the shear
due to finite widths will not affect the results qualitatively. flow has the effect of mixing nonaxisymmetric disturbances

system is in the weak-shear regim§< 1, so that the shear E'r?gs'n;gig;i:rcgmsaanﬁﬁ' ! \.N'" f|r.?_t dIS(f:l:[IﬁS :he rehsults for
flow will not influence the structure of the interfaces them- P S€1n which the VISCoSIES of the two phases are

selves. In this case the usual hydrodynamic equations for gqual, and then generalize to the case of arbitrary viscosity

: ; . : tio. Some discussion of the relations of this work to experi-
hase- rating fluid are valid. As men & ) X
phase-separating fluid are valid. As mentioned above, the ent will be presented in Secs. V C and VI.

string phase itself seems to form only in the strong-shea‘n
regime[17]. However, here | will be concerned not with the
formation of the string phase but with its stability. The goal Il. MODEL EQUATIONS

is to understand the mechanism by which the shear stabilizes | e the same equations of motion ag18]. A simple

these remarkably elongated domains. The results may al§gnary mixture can be described by one scalar order param-
illuminate the stability of the highly anisotropic, bicontinu- eterd, the difference in concentration between the two com-
ous morphologies observed in weak shear. | will neglect the,onents. Since we are interested in late times after a tempera-
ends of the string and also the possiblity that it could beyre guench when the system consists of well-defined
inclined at a small angle to the flow direction. This approxi- yomains, the usual Ginzburg-Landau form for the coarse-

mation seems reasonable given the extraordinarily high agyrained free energy of a symmetrical mixture is sufficient to
pect ratio observed for the strings and the fact that long slerngescribe the thermodynamics:

der drops in shear have a long central portion that is
cylindrical and aligned with the floy18]. L s 1 5 1 ra

As well as shedding light on the stability of elongated F[‘D]:f dr(z K(V®)* = 31r@°+ 790", (2.1
domains in phase-separating fluids, this work encompasses
the problem of the effect of shear flow on the purely hydro-wherery andg are positive constants so that the fluid is in
dynamic viscous Rayleigh instability in immiscible fluids the two-phase region. Minimizing the homogeneous part of
(neglecting the thermodynamic effectdo my knowledge F leads to the values of the concentration in the two bulk
this problem has not been solved before in the particulaphases at equilibrium:
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n whereu is the exchange chemical potential. Using cylindri-

0
VO = y cal coordinatesr(,6,x) the stationary concentration profile
R ¢4(r) therefore satisfies
# ) -
VA d2¢s K d¢s 3
Kz T ar Tofst9ds=u. (2.6
o

For a sufficiently large radiusps will approach the profile
for a flat interface between the two coexisting phases,

d)zt\/%ziqﬁe. (1= ptant (r—R)/£], largeR, (2.7

where the width of the interface between the two coexisting
The fluid is assumed to be incompressible and sufficientlyphases is the thermal correlation length V2K/rg. | will
viscous that inertial effects are negligible. The equations ofissume throughout th&> ¢, so that Eq(2.7) is reasonable.
motion for the system are then the modified Cahn-HilliardOften it will be justified to further approximate the interfacial
equation for®, the Stokegcreeping flow equation for the profile by a step function so the interfaces are sharp,
velocity field u, and the incompressibility condition:

FIG. 2. Cylindrical domain in shear flow.

¢s(1)~ O ((r=R)/§). 2.9
FeL) , OF _ ) ] ] _
e u-vb+mMvVv 50 (2.2 Note that f(_)r e|the_r interfacial profile there_ is a surface_ten_—
sion associated with the presence of the interface, which is
S just the excess free energy per unit area at the inteffegle
0=vV2u+Vd — - VP, (2.3 2
6P o d 4 2
o= Kf_mdr< dqis) =§K¢§/§= §ro¢§,g. (2.9
0=V-u. (2.9

If the viscosities of the two phases are equell=1°
Here M is a concentration-independent mobility,is the =, applying a constant shear strdsg far from the cylin-
viscosity, andP is the pressure, which in general is deter-der leads to simple shear flow everywhere, with stationary
mined by the incompressibility conditiq.4). The equation  velocity field
for the velocity(2.3) is generalized to include the coupling of
the order parameter to the velocity fig@5]. This term leads Us= yyX= yr (COH)X, (2.10
to a capillary force at interfaces, where gradient®imduce
fluid flow. Equations(2.2)—(2.4) are the same as those of here y=1II,/v is the shear rate. More generally, for arbi-

“model H" (without the thermal noise termsised to study trary viscosity ratiou=»'/1° the stationary velocity field
critical binary fluids[27]. These equations have been used

extensively to study phase separation in binary fliRE.
Now consider a single cylindrical domain of radi®&
composed of, say, phasewith viscosity ', immersed in an
infinite region of phases with viscosity »° as illustrated in
Fig. 2. The external shear flow is imposed alongxhdirec-
tion by applying a constant shear strddg far from the
cylinder. Below | will allow for a finite width interface be-
tween the two phases only in the case that the viscosities are
equal, v'=1°=v; when the viscosities between the two
phases are different | will assume the interfaces are suffi-
ciently sharp that the viscosity changes discontinuously &jyhere the shear rate is defined in terms of the outer viscosity,
the interface so that Eq2.3 holds in the two different —T1./+°. Solving for L. gives
phases separately. The first step in a stability analysis of th— o' 9 9
cylinder is to derive the steady-state solutions to the equa-

Us= us(r,e)i will have a different slope in the two phases.
Taking the interface to be mathematically sharp as in Eg.
(2.8), we can solve Egs(2.3 and (2.4 for ug inside and
outside the cylinder separately and match the solutions at the
interface atr ="R. The velocity field must be regular at the
origin and correspond to simple shear flow far from the cyl-
inder, so that

lim ug= yr (cos)X,

r—oo

tions of motion that correspond to these assumptions and to 2y r(Cos)X r<mr,
the geometry of Fig. 2. We therefore assume thais a _ mtl ’

function ofr only and that the velocity is only nonzero in the Us(r) = 2 1

x direction,u=u(r,6)x, and look for time-independent so- yr+ 1 yRZ)F (cosf)x, >R.
lutions. The Cahn-Hilliard equatiof2.2) has steady-state so- s

(2.1

It is convenient to rewrite the equations in dimensionless
_ 2 3_ form by scaling lengths by the correlation lengththe con-
=— - + =u= . 4 : P ) .
KVZ®—ro®+gd™=p=const, 29 centration by its equilibrium magnitude in the bulk phases

lutions satisfying

SF
5D
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¢e, and time by the characteristic diffusion timg. The
velocity is scaled by the correlation length over the diffusion
time:

FIG. 3. Undulationm=1 mode of the cylinder.

— r r
r=r o =, I1l. STABILITY ANALYSIS
V2K~ ¢

In this section, | present the strategy for calculating the
stability of the cylindrical domain. We know that an infinite

— 2Mr, t cylinder is unstable to varicose perturbations. One could
t= 2 imagine other, nonaxisymmetric perturbations of the cylinder
3 4 as well, such as the “undulation” mode shown in Fig. 3. In

Sec. IV, we will find that the cylinder is stable to all of these
perturbations. The shear flow will have the effect of mixing
- ¢ the different ibl bati
b=— possible perturbations.
Pe Consider small perturbations about the stationary solu-
tions found abovdin the rest of the discussion | will drop
the bars over the dimensionless variables for clarity

— ¢ B E
U=, Ve =D~ ¢, (3.0
o & V=U—Us. (3.2
P=P——.
2K ¢ To linear order in the small perturbatiogsandv, the equa-

_ tions of motion are
Note that the new dimensionless correlation lengtl§=sl.

In dimensionless form the equations of motion are now  d¢ d¢ 1 1
—=— us(r)cosag - ¢g(r)vr+§V2 - EVZ

— ot
p o 1= 1 — — —
—=—u-VO+-V? — V2O -d+P3|, (2.12
at 2 2 +Ws(r))¢, (3.3
- 1— 1 — — —\ 1—
0=V2u+—V<D(——V2<D—<I>+d>3 - —VP, (2.13 1 1 1
] 2 U] 0=V2v+;d);(r)(—§V2+Ws(r)>¢r—7—7VP, (3.9
0=V-u. (2.14

0=V-v. (3.5
The equations are characterized by a dimensionless param-
eter, the rescaled viscosity. Here # is the appropriate viscosity for whichever region is
under consideration;, is ther component of the perturbed

_ Mgy 4AMryv o1 velocity field v, and primes indicate differentiation with re-
=TT 30¢ (219 spect tor. Ws is a function of the stationary concentration
rofile:
(In the case of two different viscosities there are two dimen-p
sionless parameters;y’ and %°.) In dimensionless form the 92f
stationary solutions corresponding to the cylindrical domain Wy(r)=—: =— 1+3¢§(r). (3.9
in shear are G
¢s(r)=tani(r —R), (2.19 The time dependence of the perturbations is determined
by the concentration equatiai3.3). The system is transla-
2S — - — tionally invariant in thex direction, so we can write any
r(cosé)x, r<R, : : L
I 7R perturbation as a sum over Fourier modes.ifBince we are
ug(r)= ISR 1 interested in the growtlior damping of perturbations we
Sr+ (——SRZ): (cosf)x, r>R, take
utl r

(2.17 d=¢(r,0)e™ " v=y(r,f)e* et (3.7

where the dimensionless radius of the cylindeRis R/§.  we will be interested in long-wavelength fluctuations for
The dimensionless shear r&@e y; is simply the product of ~ which the dimensionless wave numbeg1 [let k=k/¢ be
the shear rate and the diffusion timgand thus represents a the wave number ang = w/ 7, be the growti{damping rate
second dimensionless parameter that characterizes thiethe original variablek Substitution into Eq(3.3) leads to
strength of the shear flow. an eigenvalue equation for the growth rate
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, , 1o o\ 1 &
w¢(r,0)=|kus(r)cos9¢(r,0)+¢S(r)vr(r,0)—E FE I'E "rﬁa—ez—k

11 a( a) 1 1,
For) oz g T2 TR |(r.0). 39

A real, positive value ofv(k) indicates stability of the cyl- tion ¢,. The smallest eigenvalues of E(.9 will corre-
inder against the perturbation. Sinee depends on¢  spond to eigenfunctions describingrdependent deforma-
through Eq.(3.4), this eigenvalue equation is essentially antions of the cylinder, in which the interface is translated by a
integro-differential equation in which the expression for  small amount but the interfacial width remains fiXdé,29.
acts as an integral operator @n Higher eigenvalues correspond to other deformation modes
Equation(3.8) cannot be solved exactly, so we need anin which the structure of the interface changes, such as
approximate approach. Following the calculational approackreathing modes that change the width of the interface. | will
outlined in[15], first consider the Cahn-Hilliard part of Eq. neglect all such modes here, since they are more quickly

(3.8), without the hydrodynamic terms: damped than the slow translational modes and are not impor-
tant to the dynamics on the scdke Thus, we can solve the
wp=IF¢, (3.9  cahn-Hilliard part of the eigenvalue equatih8) by using

the variational theorem with a trial function corresponding to
the translational deformation of interest.
The translational modes can be characterized by their an-

where we have defined the operators

2
__ E E i( r i) +i ‘9__ K2 (3.103 gular dependences. Any general perturbation of the concen-
2\rar\ ar) 2 g2 ' tration field can be expanded as a Fourier serieg: in
2 .
_ _Eli(ri L Yeiwin). S(r,0)=> €™ (r), (3.13
2r 9r\ dr] 2r2 902 2 S m

3.10 . . .
( b where ¢,(r) is the function necessary to translate the inter-

This part of Eq.(3.8) includes the dynamics of the concen- face by a small amoundr in ther direction[the functional
tration field on the scale of the interface. SirBe 1 (yr,  form of the ¢y(r) will be calculated below in Sec. IV A
<1), the shear flow acts on the scale of the domains but i§he Cahn-Hilliard part of the eigenvalue equation can then
not strong enough to alter the interfacial profile. As we will be rewritten as

see shortly, this assumption allows us to find an approximate

solution for ¢. Let ¢, be the set of eigenfunctions of Eq. Om®m(r)=Lm(r)Fu(r) ém(r), (3.14

(3.9 and define a set of “conjugate” functions by
where the operators are

I'én=o,. (3.11 1 d2 1d 2
m

Then one can show thdt and F are Hermitian operators Fn=— 5 ﬁ “ordr +— +§k2, (3.153

2

(although their product is npas long as the,, and ¢,, obey 2
periodic boundary conditions or vanish at infinity. The eigen- ) )
valuesw, are real and the eigenfunctions and their conju- Eo—_ }d__ iiJr m_+ 1k2+3¢>2—1
gates are orthogonal: m 24r2 2rdr o2 2 s -

(3.15bh
~ — I x —
(d)m’d)”)_f dr ¢in(1)én(r)=0 for n#m. Each modep(r)e'™? corresponds to a different geometrical
g perturbation mode of the cylinder. In the absence of the ex-
For any pair of trial functionspy and ¢4 obeying the same ternal shear flow, the cylindrical domain will be unstable to
boundary conditions, there is a variational relation that giveshe axisymmetricm=0 varicose mode as discussed in the

an upper bound on the lowest eigenvatug29,30: Introduction(see Fig. 1. We will see below that then=1
mode shown in Fig. 3 is an exact solution to E8.9) for
o = (¢o.Feo) 312 K=0.Atk=0, it simply corresponds to a uniform translation
min™ ~ "

(b0, d0) ’ of the entire cylinder and is thus marginally stable with ei-
genvaluew,(k=0)=0. We might anticipate that the cylin-
Here the parentheses again indicate inner products. der will be stable to higher modes iin as well. Note that the
This variational theorem can be exploited to find solutionsshear flow term in Eq(3.8) is proportional to cog so this
to Eq. (3.9 corresponding to various perturbations of theterm should have the effect of mixing modes with different
cylinder. Application of Eq(3.12 requires a good trial func- values ofm.
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Now consider the full eigenvalue equation, Eg.8). We €oo(r)
are interested in the stability of perturbations characterized L
by the variousf#-dependent translational modes. The func- b(r,0)= €161

tions ¢,(r)e™?T ' are approximate eigenvectors of Eq.
(3.9). To solve the full equation we adopt an approximation
similar to “tight-binding” or k-p approximations used in
solid-state physics. We assume the translational modes agid multiply on the left in Eq(3.8) by the corresponding
good basis states for the full problem and write E218) as  conjugate vector. Here the, are the amplitudes of the smalll
a matrix equation in this basis. We can truncate the matrix t@erturbationsé,,. Recall that the conjugate functiod is

only include a finite number of statesand then diagonalize . ~_ . - . .
the matrix to find the stability eigenvalues. This is valid defined byI'¢=¢ so it satisfies the Poisson equation

when the two hydrodynamic terms are small enough that

they only cause mixing among the states included in the 1

basis; they must be small relative to the distance to the next - §V2¢= b. (3.19
higher eigenvalue not included. Also, the shear flow must

satisfy S<1 so that it is reasonable to only consider the

translational deformation modes. In the strong-shear reglms\/e can expand in the same way as so that

S>1 (:yT§> 1) the shear flow might couple to other modes
that we have neglected, which alter the width or shape of the

interfacial profile itself, since these modes only damp out on ~ - 0 o ot
a time scale of roughlyr,. Note that the term containing d)(r,e,x,t):% Pm(r)e e,
v,.(r,0) in Eq. (3.8 depends omp through the hydrodynamic
equation(3.4). So for each moden we can solve Eq(3.4)

for v (r,0), assuming that(r, ) is given by the approxi-
mate basis functiomp,(r)e'™?. In general, the resulting ve-
locity field can then also be expanded as a Fourier serie
Denoting byv,, the solution forv obtained from substituting
Eq.(3.7) and ¢(r,0) = ¢y(r)e™? into Eq.(3.4), we can ex-
pand

€2¢>2(r)92“9

in which casel'y,¢m=¢,. We can easily solve fo(r)
using the Green’s function for the Laplacian in cylindrical
Toordinates. The result is

?zsm<r>=J:r'dr'sz(kr>>|m<kr<>¢m<r'>, (3.19

VinlT,0) =2 €M, (1). (3.16
n
wherer . (r-) indicates the lességreatey of r andr’, and

The ¢ dependence of will not necessarily be the same as Eénc’cl);nm?srea:‘?eer r':gﬁ;g@?nggisﬁlleﬂlj;f?g;ns' Then E8.8

that of ¢,,, S0 in general the coefficients(r) in the sum

will be nonzero even fon#m. Dr-0)* =(Ba(r) D)0 Do(rye-2i0 ...
To obtain the effective matrix equation corresponding to P, 6)"=(dol(r)  ba(r) dlr) )
Eq. (3.8), we write ¢(r, ) as a vector and integrating over alb,
(¢o, bo) @ _ 0 0 €
0 (¢1,¢1) @ 0 T €1
0 0 ($2drw &
~ , ~ 1 ,
(¢0,vr,0005) + (o, Foco) ¢01§|kus¢l+vr,01¢s 0
~ 1 ~ ~ 1 €o
¢1,§ikus¢0+v,‘m¢g) (¢1,0r 11¢) + (b1, F101) (¢1-§ikus¢2+vr|12¢é €1
= . (3.19

~ 1 -
0 (¢2!§ikus¢l+vr,21¢é) (2,0 200¢) + (2, Fahy)
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Solving this equgtlon gives approximate stability eigenvalues 1d%; 1 d%p; 1 do, des LA,
w(k) for the cylinder in the shear flow. We have used the — 273 or 42 Tozdr W+3¢SW:0'
definitionT',,¢p,= ¢ the diagonal diffusive terms are then dr dr 2r 4.9
exactly the variational expressiai3.12. The shear terms 4.2
involving the stationary velocitysxS are completely off- gt this is simply equivalent to
diagonal, so they will indeed have the effect of mixing the
modes. We will find in Sec. IV C that the off-diagonal ele- Fro16.=0, 4.3
ments involvingv only mix modes that differ by+1 as
written in Eqg.(3.19 and that they are also directly propor- so ¢l(r)z¢é(r) is an exact eigenfunction df,F, for k
tional to the shear rat&. Thus in the absence of the shear —q wjth eigenvaluas,=0. We can exploit this solution to
flow, S=0, the matrix is completely diagonal and the  approximater,,¢,, for generaim. SinceR>1 (R>¢) and
modes are independent, with stability eigenvalues sinceV2¢ is only significant near the interface et R, we
can in general replace the term?/2r2 by m?/2R? in the
expression for,, [Eq. (3.150]. But then we would expect

W :(d’m’vr,md’é)*'(fﬁm,':mfbm) all m modes to have roughly the same radial dependence as
" (Dm»bm) them=1 mode, so we can approximate
=wmhtong, S=0. (3.20 2

m 1
Finém~ Fmd)é:Fm:ld’é'i_ <__P> ¢é . (4.9

2r?
These zero-shear stability eigenvalues are the sum of two
terms, one due to hydrodynamic transport in the system anbor nonzerck, Fp_;d¢=3k?*aq, so this gives
the other due to diffusive transport. Solving E§.19 for
nonzero shear rates requires truncating the matrix at some
modem; since we expect only thex=0 mode to be&possi- Fndm~
bly) unstable, we might anticipate that only a few of the
higher modes are needed to investigate the behavior of therom Eq.(3.20 the diffusive part of the diagonal matrix
m=0 mode under shear. elementw,, is then

To summarize the results of this section, the equations of

1. m*-1| | A
E + 2r2 ¢s' (5)

motion were first linearized in the small perturbatiohgnd w0 1 m2—1
v and expressed parametrically in terms of the wave number Om == f rdr ¢, §k2+ > b . (4.6
k. The perturbations of the cylinder of interest here, the (ém,Pm) S0 2r

translational modes, were characterized by their dependence ) ) ]

on 6. A variational expression was introduced for the diffu- W€ are assuming we can approximaiieby the flat interface
sive part of the problem, and the eigenvalue equation for thé'm Eq. (2.7) so ¢ =secli(r —R). Since all modes have
full problem was written as a matrix equation in the basis ofthe same radial dependence, we ggi(r)=¢(r) in the
them translation modes. In the remaining sections | calculatglenominator as well, which gives

the various matrix elements in E¢3.19, which requires

solving the hydrodynamic equation for the perturbed velocity _ 1

i ) oo . O =

field v, and then splve the matrix equa_tlon itself and examine m,d (Bo(r),s6cR(r —R))

the results for various parameters of interest.

= (1, mP-1
xf dr EkH T sec(r—R), (4.7
IV. MATRIX ELEMENTS AND RESULTS

WITHOUT SHEAR -
A. Diffusive contribution f/’m(r):JO r'dr' 2K (kr-)Im(kr-)sechf(r’' —R).

We begin by calculating the diffusive contribution to the (4.8
matrix elementsw, 4 as defined in Eq(3.20. We need to
determine the dependence of the basis functiogs,. For
v,=0 andk=0, translating the entire cylindrical interface by
an amountdr, ¢4(r+dr)= ¢4(r)+Ves-dr, requires add-
ing the function

The diffusive contribution tow has thus been reduced to
quadrature.
Equations(4.7) and (4.8) are integrable numerically and

are valid for diffuse interfaces of width. However, quali-

tatively the results are the same for sharp interfaces, in which
Veps= i = L(r)(Y cosh+ 2 sind) (4.1  case the result can be expressed in closed form. The easiest

way to take the sharp interface limit is to take

to the original interfacial profile. But the translated interface, secli(r —R)—248(r-R),

and thereforéV ¢, should also be an exact solution of Eq.

(3.14. We can verify this by differentiating E¢2.6) for the

4
stationary solution with respect tar: sectt(r—R)— 39r=R), “.9
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FIG. 4. Dispersion relations in no shef¥y4 (solid curve, Q4

(dashed curve and{), 4 (dotted curve:

in all of the integrals, wheré(r — R) is the Dirac delta func-
tion. [This is equivalent to using the step-function profile Eq.

FIG. 5. Corrections due to a finite width interfacé (symbols
to the eigenvalues for sharp interfaces 4 (solid curvg andw, 4
(dashed curvefor R=4¢.

where @, 47:= €0 4(kR)/IR3. These are the diffusive

(2.8).] The prefactors maintain the correct normalizations, sgontributions to the stability eigenvalues in the absence of

we are taking the width of the interfage~0 while keeping
the surface tensiomr constant. Thed functions then allow

the shear flow.
Figure 5 shows the difference between using finite width

easy evaluation of the necessary integrals. The conjuga\feterfaces in Eq(4.7) and using the sharp interface expres-

function ¢, is

~ [ARK(KR)Iy(kr),
(1) = 4RKp(kr) I n(KR),

so the normalization integral is

(Zsm,¢m>sf:rdr?ism<r>25<r—R>

=8R?K (kR)I n(kR).

sion (4.13 for a cylinder of radiusR=4¢, for the lowest
two eigenvaluesw,q andw, 4. The finite width curve is at
most 15% more negative than the sharp interface curve for
(4.10 woq, and 31% larger than the sharp interface curve for
wiq, at kR=0.5 (near the maximally unstable varicose
mode. The shapes of the curves are qualitatively the same in
both cases. AR increases and the step-function approxima-
tion for the interfacial profile becomes better, the difference
between the curves grows smaller. FB=6¢ the differ-
ences are reduced to roughly 9% and 20%, respectively.
Thus the qualitative behavior should remain unchanged for a
(4.1 domain with sharp interfaces, but detailed comparison with
experimental or simulational data may require including the

Substituting into Eq(4.7) we find that the diffusive term in  effect of having diffuse interfaces.

the stability eigenvalue is

k?R*+m?-1

®Om.d

In the original variables, the dispersion relation is

K*R?+m?—1

T12R%K (KR)I (KR)

’G)'m‘d’]'g

which we note can be written independentlyéoés

Mo k*R%+m?-1

T1ARYEK (kR (KR)

Wm,d

We immediately see that the axisymmetric=0 mode is
thermodynamically unstable faR <1, i.e., for wavelengths
longer than the circumference of the cylinder, whereas th
m=1 translation mode is stable for allas predicted. Figure
4 shows the dimensionless part of the first three modes,

K2R2+m2—1

Qm,d( KR)=

402 R¥K (kR (kR)

12K (kR) o KR)

B. Velocity field, equal viscosities

(4.12 Next consider the matrix elements involving the perturbed
velocity field v. This section will be limited to the special
case in which the viscosities of the two phases are equal,
7'=n°=n. Then it will turn out that the velocity matrix
elements are completely diagonal, even with the shear flow,
and it will be possible to obtain closed form expressions for

4.1
13 () =VD).
Recall that the perturbed velocity fiel satisfies Egs.
(3.4) and(3.5):
0=V 1VP+1¢’F¢F (4.16
(4.14 7 n s '
0=V-v, (4.17

gvherer —3V2+W;. To solve forv, we follow a general
procedure from Happel and Brenri@&l]. Taking the diver-
gence of Eq(4.16 and applying the incompressibility con-
dition (4.17) leads to a Poisson equation for the presdre

(4.19 V2P=V.-($.Fgr). (4.18
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Expanding the pressure d@=P,,(r)em?*e~“t we find Vom=—i9p(r)emielx—ot (4.22
that P,(r) satisfies . . .
so thatv, has a phase shift relative tg . Equations(4.21)
1 m2 1d then become
Pt TP 3 P k?Pn=T G (T $iF ),

k2+

1
(4.19 Qm+rem_ r2 _r_zﬂm

m2+1 2m
m

the homogeneous part of which is simply the modified 1 1
Bessel equation. Using a Green'’s function and requiring =—P/—= ¢.Fmdm, (4.233
P (r) to be finite atr =0 and to vanish as—~, we have n

m?+1
2

2m m

ﬁm—r—zem=—;

k2+

Pm.

(4.23b

r

% 1 d " '
Pm(r)=—f0 r’olr'Km(k|r>)|m(kr<)r—,F It T Om—

X[ @sFmdm(r)] Adding these together we find

) d 5
— ' , 1 , (m+1)
_L dr —dr,[Km(kr>)lm(kr<)] (@m+ Om)"+ (@t Im)’ K24 5 )(em+0m)
1 m2_1 1 m 1
T2 r_ _ r_ _ !
x(zkr + " )secH(r R), (4.20 __npm - P, nd’sFmQSm-

where we have used E¢4.5). Substituting this expression 1he homogeneous part of this equation is the modified

for P into Eq. (4.1 gives a vector Poisson equation for ~ Bessel equation, with general solutionlg,.,(kr) and
In cylindrical coordinates, the and § components oy~ Km+1(Kr). Similarly subtracting gives

are coupled: (m—1)2

k2+ I'2 )(Qm_ 1‘}m)

1
(Qm_ 1?m)""' F(Qm_ 1‘}m)/_

Vo 2o v 1P L
R e , .

r 2 maor p® 1 om_ 1
:;Pm_"ﬁpm_;qsslzmd’mv
ZﬁUr Ug_l JP

V20t 290 2 p 90" (4.21b so now the homogeneous part of the equation has solutions
' r Im—1(kr) and K,,_;(kr). We can thus construct exact
We can solve for both together by writing Green’s functions for the combinationg,,+ ¥, and g,
— 9. The solutions to the inhomogeneous equations are
Ur.m=Om(r)eMmielkx-ot (4.223  therefore

em(r)+Im(r)=— jo rdr' Ky g (Kro) e q(kro)

1 m 1
—Pr'n(r’)——,Pm(r’)——¢>§Fm¢>m(r’)), (4.243
n nr 7

o 1 m 1
Om(r) = Oy(r)=— fo r’dr’Km1(kr>)lm1(kr<)(;P(n(r’)+ WPm(r’)— ;¢éFm¢m(rl)> : (4.249

All of the functions in these integrals are known, so we have reduced the solution f¢r) to quadrature. For the case of
equal viscosities, we could therefore again integrate numerically to find the matrix elements for finite width interfaces.

Instead | will proceed with the sharp interface approximation @d). In this limit the velocity matrix elements in Eq.
(3.19, divided by the normalization integrals, are

__ 1
(B bm)

Thus w, , is given not surprisingly by the radial velocity at the linearized position of the interiggg evaluated at =R.
From Eq.(4.20 we find the pressur@,, is given by

J:drr?ﬁm(r)vr,m(r)za(r—R):ur,m(R). (4.25

Wm h

2(k’R?+m?—1) [ KK/ (KRl (kr), r<R,
— = (4.26)

Pm(r)= 3R KKm(kn1m(kR),  r>R.
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Substituting into Eq(4.24), solving forv,, and performing some reductions using Bessel function identities, we find

2(K?R*+m?—1)[1 1
3R Lz(m+1)Km+1(q)|m+l(q)_E(m_l)Km—l(q)

Wmh=—

1
lm—l(q)+ Eq[Km(q)lm-#l(Q)_ Km—l(Q)I m(Q)]

1
+ g 0T Km+2(@) e 2(Q) = K 1(@) - 1(@) LK m-2(@) e 2(Q) = K 2(@) m-2(@)] (4.27)

where we have se=kR for convenience. These give the tion is graphed in Fig. 6 for the first three modes. Again the
hydrodynamic part of the stability eigenvalues in the absencgaricose mode is unstable for alk 1/R, whereas the higher
of the shear flow. Since | have taken the sharp interface limitmodes are stable for aM.

this part of the calculation has been completely decoupled

from the dynamics of the concentration field Eq. (4.25 is

equivalent to the usual kinematic condition in hydrodynamic

stability calculations. Thus the result E@.27) is an exact,
rather than approximate, solution for the hydrodynamic sta:

C. Velocity field, general viscosity ratio

For the case of general viscosity rajig it is much more
difficult to solve the hydrodynamic equation with diffuse in-

terfaces. To do so requires writing the viscosity as a smooth
function of ¢ that changes from the value inside the cylinder
7' to the value outside® in a continuous way, which intro-
duces extra terms into the original differential equaii@r3).
Thus in this section | will start with sharp interfaces from the
beginning. It is then more sensible to follow a different ap-
proach to solving the hydrodynamic equation. For sharp in-

bility of a cylinder of one fluid immersed in a second immis-
cible one. It can therefore be compared directly with previ-
ous results. For the varicose mode=0 we obtain the
stability eigenvalue

2(k’R%2—1)

1
wop(kK)= [Kl(Q)|1(Q)+§qK0(Q)|1(Q)

37R terfaces, the term coupling the total concentratiorio the
1 total velocityu in Eq. (2.3) becomeg33]
—5aKa(q)lo(a) | (4.28
’ Vo L ohao
¢ —ohalon,

Putting this back in dimensional form we have

o(g?~1)
VR

whereh is the curvature of the interface located#t) =0

andn is a unit vector normal to the interface. This is equiva-
lent to the usual boundary condition on the jump in the nor-
mal stress across a fluid interface. Instead of including this
coupling term in the hydrodynamic equation, we can just
solve the usual creeping flow equations for the perturbed
This expression is the same as that found by Stone and Brerelocity fieldV' inside and/° outside the cylinder separately,
ner[32] and may be obtained from Tomotika’s general resultand apply the appropriate boundary conditions at the inter-
for the dispersion relation of the viscous Rayleigh instability,face in the usual manner. In each regiosatisfies
in the limit of equal viscosities between the two liqudsf].
Note each mode in Ed4.27) can be written in the origi-
nal variables ass, n=0Qy 1 (kR)/ VR, whereQ, , is di-

mensionless. This dimensionless part of the dispersion rela- ) o )
and the pressure simply satisfies the Laplace equation,

1
won(K) = Kl(Q)ll(Q)"‘EqKO(Q)'l(Q)

1
_Equ(CWo(Q) (4.29

1
Vzv:;VP, 0=V.v, (4.30

0.4 T T T T 2
___________ V<P=0. (4.3)
03 - 7 The location of the interface of course depends on the per-
turbation modeg,,, in question; sincep,(r) is now a step
02 - . function we only need to know the location of the step,
Q - which is given by
0.1 | - . o
P r=R— eg/M0*ikx (4.32
0 == for each modem, where € is the amplitude of the small
perturbation.
0.1 1 1 1 1

The solutions to Eqg4.30 and(4.31) are straightforward
so the details are given in the Appendix. The general solu-
tions are found in terms of modified Bessel functions; the
exact solutions are then found by applying the boundary con-
ditions and solving numerically for the unknown constants.

KR

FIG. 6. Stability eigenvalue$)yy, (solid curve, ;) (dashed
curve), and(),, (dotted curvefor u=1 in the absence of shear.
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The results are the coefficients,(r) in the expansion for the undulatoryn=1 mode depends less strongly pn
(3.16. As shown in the Appendix, the only nonzero coeffi- From Fig. 9 we see that thex=2 mode depends only
cients are the ones for which=m andn=m=1 so Eq. weakly on«R.
(3.19 is tridiagonal as written. As was shown in Eg.25), Finally, in the Appendix the hydrodynamic equations are
the velocity matrix elements are then simply given by solved analytically ak=0, providing a check on the numeri-
cal results. The stability eigenvalues lat0 are diagonal
~ / and independent of the shear r&eEq. (A32):
(¢n vUr,nm(r)¢s)

~ =0, mm(r=R). 4.3
gy TR (4.33

wmn(k=0)= OL m=2, (4.39

In the case of zero shear flow, only the diagonal matrix ele- 37°R(u+1)

ments are nonzero and the hydrodynamic part of the stability

eigenvalues is therefore,, n=v, mm(R). Again the results With wop(k=0)=w;(k=0)=0. Note that since the only

here forS=0 are decoupled fronp and are therefore exact, remaining off-diagonal elements in E¢B.19 vanish atk

for two immiscible liquids. =0, this demonstrates that the cylinder is stable towards
| show in the Appendix that in the absence of the sheaX-independent deformations that would result in a noncircu-

flow the velocity matrix elements and hence the eigenvaluellr cross section, even in the presence of the shear flow.

are proportional to 2f°R, just as in theu=1 case. Figures

7-9 show the dispersion relations for the dimensionless parts D. Shear flow contribution

of the three lowest modes for different valuesgofholding

7° constant The results for the varicosm=0 mode are Finally we evaluate the off-diagonal shear flow matrix

again the same as those of Tomotj4]. As the cylindrical ~ €léments
domain becomes less viscous relative to the background, it
becomes more unstable and the wave number of maximum (‘75“' s(1) ém)
instability xnax becomes smaller. Note that the damping rate 2 (b, bm)
0.2 . ' ' 77 where we have divided by the normalization integral. Since

we are assuming thas,(r) has the same radial dependence
for all m, we simply have in the sharp interface limit

0.15
1 (En! (r)ém)
Q,, 01 —ik drrug(r)dndm
2" G ) 2<¢n,¢mf 1)
0.05 = ~Lfodr rus(r) n28(r—R)
2(¢n,bm) o
0 ikRS
|kus( R)= +l (4.3

FIG. 8. Stability eigenvalug),,, for S=0 at differentu: u
=10 (dashed curve =1 (solid curvé, x=0.1 (dash-dot curnve ~ Thus each off-diagonal element is the same independent of

wu=0.01(dotted curvg, and w=0.001(long dashed curye m.
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FIG. 11. Stability eigenvalues R (S)] (solid line) and
R Q;p(S)] (dashed ling for u=1 at the critical shear rat&
=0.160.

FIG. 10. Stability eigenvalues R@,,(S)] (solid line) and
R Q;n(S)] (dashed lingfor u=1 atS=0.1.

V. RESULTS WITH SHEAR
_ ) ) cylindrical domains, the diffusive term will dominate,
With all the necessary matrix elements in hand, we caRyhereas for less viscous and/or large cylindrical domains,
now solve for the stability eigenvalues in shear by diagonalthe hydrodynamic term dominates. In the following, | first
izing Eq. (3.19. To do so requires truncating the matrix at examine the stability eigenvalues in the two extreme limits in
some point. Since the off-diagonal matrix elements are aljyhich the hydrodynamic terms or the diffusive terms can be

proportional toS, we can assume that any perturbation thalgisregarded entirely. | will then present some results for ex-
damps out more quickly than the time associated with th%)erimentally realistic parameter values.

shear flow can be ignored. Thus we only need to include
modes whose damping rates are less than or of the order of
the applied shear rate. For comparison purposes, the values
of the stability eigenvalues &=0 give good estimates of First consider Eq(5.1) in the limit that the diffusive terms
the damping rates of highm modes without having to calcu- in the diagonal elements are negligible, so that= wm .

A. Stabilization of the Rayleigh instability

late the full dispersion relations.
In this paper it will be sufficient to only include the first
three modes, in which case the matrix equat{8ri9 be-

Physically this corresponds to examining the effect of the
shear flow on the purely hydrodynamic Rayleigh instability.
Since the diagonal matrix elements,,, scale as B°R

while the off-diagonal elements do not depend sfhor R,

comes a X 3 secular equation fow:
the stability eigenvalues will also scale with 1%4°R. De-

ikRS note the eigenvalues found by diagonalizing Esl) with
@Wo— @ wtl +iSwg 0 the shear flow present by
ikRS ikRS 1
m""swm 01— m""swlz =0, wivh(s):TRQJ'h(kR"U"S)’ (5.2
ikRS . 7
0 m +iSwz w2 where the index refers to the order of the new eigenvalues:

(5.) @o(S<wy(S)<.... Returning to the original variables,
this relation is simply

where | have pulled a factor a5 out of the off-diagonal
velocity matrix elementsy py, (R)=iSw,,. This leads to a
cubic characteristic equation for the stability eigenvalues

(k). Since the characteristic equation has real coefficients,
the roots can be found analytically; there will be either threegjnce o/,°R has units of inverse time. we can measure the

real roots or one real root and a complex conjugate pair. hear ratey just as well in these units as in units ofr1/ so
Recall that in the absence of the shear flow, the stabilityg‘ &) ¢

eigenvalues are simply given by the sum of the diffusive andOr the rest of this section | will tak&="Ry/o.
hydrodynamic terms as in E¢3.20: We start by considering the equal viscosity cages 1.
Figures 10-12 show the real part of the dimensionless dis-

persion relationd); ,(kR,1,S) for the first two stability ei-
genvalues in shear flow at various shear réties third mode

| showed in Sec. IV A and Sec. IV C that these two termswas included in the calculation but is not a particularly in-
scale differently with the parameters of the system, withteresting function o). For some values of the lowest two
wm,dzﬂm,d(kR)/R?’ and wnn=Qnn(kRu)/7°R. The  modeswyp(S) andw;,(S) are a complex conjugate pair and
relative magnitude of these two terms depends on the dimerso they show up as a single curve in Figs. 10-12; for the
sionless viscosity parametef’=2£v°/30 7, and on the ra-  regions in« for which there are two curves shown, the two
dius of the cylinder. For sufficiently viscous and/or small eigenvalues are both completely real. We see that at small

@ h(S)= :,TRQj,h(kR.M,S)- (5.3

14

S=0.

Wm= CUm,d"’ ®Wmh,
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FIG. 12. Stability eigenvalues R@,,(S)] (solid line) and K s

R Q44(9)] (dashed lingfor u=1 atS=0.18. ) )

’ FIG. 13. Real part of the eigenvector correspondinglig, at
where there is a complex conjugate pair, the perturbations=0-1, in the6=0 plane.
are traveling waves with an overall damping rate. At low
shear rates the mode with the lowest eigenvalyg(S) is  stable. As the shear rate increases, the original varicose mode
still unstable, but the window of wave numbers over whichbecomes more distorted as it is mixed with the other modes.
wop(S)<0 becomes smaller &increases. At some critical Next we explore the effect of the viscosity ratio between
shear rateS; the minimum inwq,(S) crosses zero, at a criti- the two phasesy.. When the viscosities of the two phases
cal wave numbew.=Kk./R. Above this critical shear rate, are equal, above the critical shear rate the cylinder is stable
the instability is gone—the initially unstable varicose modeagainst perturbations at all wavelengths as we see in Fig. 11.
has been stabilized by the applied shear flow, by being mixedhis is not the case for ajk. For generaju, the shear flow
with the higher modes. does stabilize the varicose mode around the main instability

Clearly, the critical shear ratg, must have the same at Kmax, but for someu there is a residual instability left at

dependence on°, o, andR as the stability eigenvalues: ~ Small wave numberéong wavelengths An example foru
=0.25 is shown in Figs. 15 and 16. Figure 15 shows the

. oSdw) lowest two stability eigenvalues at a low shear rate, when the
YT on (5.4 lowest modewgy,(S) is still unstable near the original maxi-
v mally unstable wave numbe,,, /R =0.59. We see that there

Thus the critical shear rate is a monotonically decreasind @0 additional unstable region at smellseparate from the

function of the radius of the cylinder and the magnitude of &I instability. This long-wavelength instability remains af-
the outside viscosity; the smaller the cylinder or the lesd®' the main instability has been stabilized by the shear flow,
viscous the fluids are overall, the faster the growth of the®S Shown in Fig. 16. The physical significance of this re-

varicose mode and so the critical shear rate must be faster §5u@l instability will be discussed further in Sec. V C; it
well for stabilization to occur. Inverting Eq5.4), we see J0€S mean that the cylinder is still unstable to very long-
that at a fixed shear rate, there is a critical radRis wavelength perturbations. No residual instability was found

— 1% o'S() above which the cylinder is stable and below for 0.8=u=1.0; asu is either increased or decreased away

SO o L . from this range, a small instability appears smoothly from
which it is unstable. Thus if instead of an infinite cylinder we = _ : .
had a finite long cylindrical drop that was being stretched byK_o and extends over increasingly largeas u becomes
the flow, initially small capillary disturbances on the drop
would be suppressed by the flow, but as the drop thinned to
a radius smaller thaR,. the disturbances would start to grow
and the drop would break up. Note thgt is considerably
larger than the magnitudes of bdily ,(S) andQ; ,(S) at all
kR<1, so the shear rate must be faster than the rate of
growth of the instability to stabilize it.

The qualitative picture here is that the shear flow advects
opposite sides of the cylinder relative to each other so that
the special axisymmetric, varicose perturbation no longer ex-
ists long enough to be unstable. This picture is borne out by
the eigenvectors corresponding to the eigenvalues shown in
Figs. 10—-12. Figure 13 shows a cross section of the eigen-
vector corresponding to the lowest eigenvalue r@f R 0 5 4 6 8 10 12
=0.562 19 (where k2 IS the wave number of maximum K x
instability in zero shearandS=0.1, when the lowest mode
is still unstable; Fig. 14 shows the same eigenvecto§at  FIG. 14. Real part of the eigenvector correspondingdlig, at
=0.18, which is above the critical shear rate and therefor&s=0.18, in thed=0 plane.

1 (arbitrary units)
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FIG. 15. Stability eigenvalues R@,,(S)] (solid line) and

) FIG. 17. Critical shear rate as a function of viscosity ratio
R Q;,(S)] (dashed lingfor x=0.25 atS=0.14.

) B. Stabilization of the thermodynamic instability

correspondingly smaller than about 0.8 or larger than about
1.0. In the preceding subsection we saw that the hydrody-

Nevertheless we can calculate the critical shear rate rélamic Rayleigh instability can be partially or completely sta-
quired to stabilize the original maximally unstable mode, adilized by the shear flow, depending on the viscosity contrast
a function of x. The result is shown in Fig. 17. The graph between the two phases. The opposite limit is to consider
only includes values in the range 084 <2.4 since for what happens when the fluids are so viscous that the hydro-
values ofu outside this range, the critical shear r&ebe-  dynamic terms are negligible. Then the diagonal elements in
comes larger than the damping rate of fe2 mode; to  Eq.(5.1) are justw,, 4 and the off-diagonal elements are the
extend the range g would therefore require including the ones from the imposed flow,. Figures 18 and 19 show the
j=3 mode and higher & increased[From Eq.(4.34, we  dimensionless parts of the first two mode§); 4(S)
find Qn(k=0,u=0.04)=0.65, Q34(k=04=0.04)  =w; ((SR3=w, 4(S) 7R /£, for two different shear rates
=0.98, Q,p(k=0,u=2.4)=0.20, andQ3p(k=0,4=2.4)  at u=1. Here | have define®* =SR so that the trivial
=0.29 so the range in Fig. 17 is reasonab&(ux) has a  dependence oR can be factored out. Again & is in-
minimum nearu = 0.5 and rises on either side, so that as thegreased, the window of wave numbers for which the varicose
domain becomes either more or less viscous than about halfode is unstable becomes smaller. Also, the mode of maxi-
the outside viscosity, it requires a higher shear rate to stably,m instability moves to lowex. Figure 20 shows all three
lize it. The rather sharp bend near=0.1 s due to the fact ,4eq in shear for a rather high shear r&te=2. The vari-
that the maximally unstable varicose mode with growth ral%ose mode has been mostly stabilized, with a small residual
Qop(KmaR,1,.5=0) moves to lower wave numbers asde- instability at small wave numbers. Including the fourth

creases(see Fig. J, while the m=1 mode in particular mode, j= 3, allows us to raise the shear rate up to some

changes less withw (Fig. 8. The magnitudes of the two éraction of the magnitude of the=4 mode (2, 4= 64. (Note

eigenvalues both increase as the inner viscosity decreases, = . Y
but the growth rate of then=0 mode does so more quickly tﬁat |nclud|ng_thq.—3 mode dogs nqt ghange t.he Iower three
modes, e.g., in Fig. 20 at all, since it is not mixed with them

and with a larger change in the dependence&Bn Thus as . -
g g P low shear rates.The instability at small wave numbers

n decreases the interaction between these two mod I d I St s | d ab 5
changes in such a way as to result in the fairly sharp incread@0ves t0 smaller and smallaras 5™ Is increased above

in shear rate necessary for stabilization fo«0.1.

0.2 T T T T /
0.12 , ; | , /
0.15 |- -
0.1 /
/
0.08 g Olf // 4
o
»n 0.06 a /
~ [
d“ o2 0.05 4 -
o 0.04 - -
-4 e -
s -
0.02 0 —
0
-0.05 ! ! ' !
-0.02 I 1 I I 0 0.2 0.4 0.6 0.8 1
0 0.2 0.4 0.6 0.8 1 KR

KR
FIG. 18. Real part of the dimensionless stability eigenvalues

Qp4(S) (solid curvg and Q,4(S) (dashed curveat S*=0.1 and
m=1.

FIG. 16. Stability eigenvalues R@,,(S)] (solid line) and
R Q;,(S)] (dashed lingfor ©=0.25 atS=0.16.
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FIG. 19. Real part of the dimensionless stability eigenvalues 15 21 Stability eigenvalues Reo(S)] (solid line)

Q04(S) (solid curvg and Q;4(S) (dashed curveat S*=0.4 and

n=1.

towards 64, but seems pinned near0 and never quite
disappears. The changes w8h occur more slowly a§* is

increased.

R @ (S)] (dashed ling and Ré¢w,(S)] (dotted ling for .)/Tg
=1.5u4=0.257°=0.1, andR=4¢.
C. Relation to experiments

In general the stability of the cylindrical domain will be
determined by both hydrodynamic and diffusive effects, de-

Thus when the diffusive terms dominate the behaviorpending on the system parameters. In this subsection | will
there is no well-defined critical shear rate for stabilization atfirst consider the parameters relevant to Hashinedtal’s
all wave numbers«. Furthermore, unlike the case of the experimental systerfil0]. They have studied phase separa-
Rayleigh instability analyzed above, the mode that is maxition under shear flow in a pseudobinary mixture of polybuta-
mally unstable atS* =0 does not cross the axis at some diene (PB) and polystyrengPS in a common solvent of
well-defined shear rate independently of the residual instabildioctylphthalate(DOP). They find a correlation length
ity at small wave number; instead the maximally unstable~((1000) A, a surface tension on the order of t@rg, a

mode just shifts witts* towards smallek. We could, how-

diffusion constant on the order of 18 cn¥/s, the viscosity

ever, define a critical shear rate for stabilization at any giversf PB/DOP vpg~1.2 poise, and the viscosity of PS/DOB

(smal) wave numberk,; in this case the “critical” shear

rate for stabilization will scale simply as

+1
Su(re)x &

R3

vpe~0.3 poise[34]. For comparison with my results, | will
take as an example a viscosity ratio between the two phases
of ©=0.25 so the cylindrical domain consists of the less
viscous phase. For the possible range of valueg®ih the
experiment,»°~0.06~0.2, the hydrodynamic terms in the
diagonal matrix elements, are significantly larger than the
diffusive terms at all reasonable values Bf This is not

since u only enters in the off-diagonal shear flow terms, SUrprising; at the large length scale of the domais; ¢,
Once again the critical shear rate is a decreasing function ¢¥€ would not necessarily expect the diffusive terms to be
the radiusR, so for a given shear rate small cylinders will be important. Thus in this case the results of Sec. V A apply

unstable and large ones will be stable for wave number¥ith negligible modification. The critical shear rate for sta-
satisfying x> k.. bilization of the cylinder at mosk, for ©=0.25 and»°

=0.1,is
1.2 | | | | . 1.54
1 - | YeTe= R (5.6)
0.8 I- R Pt Since the theory only applies f6t=3 or so[for smallerR,
& 06 L JREEEEER i Eq. (2.7) is no longer a good approximatifrthis shear rate
o is in the weak-shear regimeyr,<1, and is significantly
& 04r ] smaller than the shear rate necessary for formation of the
02 L i string phase seen in the experiments. It is thus consistent that
the long cylindrical domains seen experimentally are stable,
0 since they are seen at shear rates that are well above the
0.2 L I I ! shear rate required for stabilization.
0 0.2 0.4 0.6 0.8 1 Figure 21 shows the stability eigenvalues well above the

KR critical shear rate, a}zrg= 1.5. Although this shear rate is in

FIG. 20. Real part of the dimensionless stability eigenvalueghe strong-shear regimer,>1 for which the theory may not
Qoq(S) (solid curve, O, 4(S) (dashed curve andQ,4(S) (dotted  strictly be valid, it seems reasonable that the theory can be
curve atS*=2 andu=1. pushed into the strong-shear regime at the large length scales
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. . . A distorts the varicose mode by convecting one side of the
0002 L \ /[ cylindrical interface with respect to the other, eliminating the
O ; special axisymmetric, pinching character of the varicose
00041\t o mode that drove the instability. Both the hydrodynamic Ray-
0.006 L N . leigh instability and the thermodynamic, diffusive instability
5 \\"-_ ,v'// are suppressed by the shear flow, although there are residual
-0.008 - L Sy ] instabilities at small wave numbers in the limit that the dif-
001 Yo ,r"l‘// i fusive terms dominate and also for viscosity ratiosutside
ooiz | W e | the range 0.8 u=<1.0. Other authors have considered the
' N y effect of flows on the Rayleigh instability, but this is the first
-0.014 ! L= L study focused on the effect of the nonaxisymmetric nature of
0 0.2 0.4 0.6 0.8 1 . . o
. shear flow on the Rayleigh instability.

Comparing with the experimental results of Hashimoto

FIG. 22. Varicose modetsoq (solid line), o, (dotted ling, €t al, | found that the mechanism presented here for stabili-
and the totalw (dashed lingfor »=0.7 andR =3¢ (S=0). zation of the cylindrical domains is consistent with the stable
“string” phase seen experimentally, and that the lengths of

O(R) considered heréf in the strong-shear condition, is  the strings may be set by the residual instabilty at long wave-
replaced by the typical time scale for domain fluctuations/engths. However, it should be noted that the stability of a
then the theory is valid heyeFor these particular parameter cylindrical domain in shear flow does not act as a criterion
values, Hashimotet al. found that the length of the strings for the observed relationship between the shear rate and the
seen in the experiment was on the order of BOOThis  radius of the domains seen in the string phase. The domains
length could be explained by the residual instability at smallin the string phase are formed through a dynamic process;
wave numbers discussed in Sec. V A. The wavelength othe observed radius is not a parameter of the sys&srin
maximum instability in Fig. 21 is approximately= 2/« this calculation but rather is determined through the self-
~250R, so the length of the strings seen experimentallyorganization process as the shear flow competes with coars-
may be set by the residual long-wavelength varicose instaening in the phase-separating system. | have merely demon-
bility in the shear flow. strated a mechanism by which these macroscopically long,
Next consider the case of near-critical binary fluids. Atcy|indrica| domains may be stabilized by the shear flow. Al-
the critical point,u=1 and 7 is a universal number; for though a few experiments have looked at the breakup of the
near-critical fluids it has the same order of magnitude, so W&tringlike domains after complete cessation of the shear flow
take the critical value;=0.7. For this value ofy, the diffu- 12,35,384, it would be interesting to do a careful experimen-
sive terms §tart_to 'b.ecome noticeable at small radii, aIthoug | study of the shear rate at which the strings first begin to
they are still significantly smaller than the hydrodynamicye hgtaple to see if the Rayleigh and/or thermodynamic
terms at larger radii, e.gR>6 or so. Figure 22 shows the varicose instabilities explored here are the main breakup

varicosem=0 mode without the shear flow, for the diffusive . . .
. ’ ; mechanisms in these systems. If so, then the strings should
and hydrodynamic terms separately at the smaklesiat is y 9

reasonable in the theory. The diffusive terms do change thBE unstable below the critical shear ragg found in this
magnitude ofwy(S) and so will have a small quantitative PaPer. _
effect on the results. The stabilization by the shear flow is The results presented here may also shed light on why the
again very similar to the purely hydrodynamic case as illusShear flow can halt the phase separation and result in a dy-
trated in Figs. 10-12. However, even for=1 there is now namic steady state, even in the weak-shear regiymes 1.
once again a small residual instability at smaltlue to the  In a concentrated phase-separating fluid when the two phases
diffusive part of the eigenvalues that persists at high sheagre both percolated so that the domains form a connected
for the small radiusk=3¢. Note from Fig. 22 that at very bicontinuous pattern, the coarsening is dominated by curva-
small k, |wog|>|wop|, SO it is not surprising that the sta- ture effects. Qualitatively we can think of a piece of the
bility eigenvalues in shear resemble those of Fig. 20 at smalhterconnected structure as a cylinder of fluid immersed in
«. Finally, the critical shear rate for stabilization of the mainthe other phase. This cylinder is susceptible to the varicose
instability S; no longer scales exactly with R/at smallR instabilities considered here, and particularly to the Rayleigh
due to the different scaling of the diffusive terms&y instability, which leads to breakup of the cylindrical region
«1/R%), but the difference is small. Thus, for near-critical into spheres. Siggigl] used this picture to explain the coars-
binary fluids the effects of diffusive transport may be observ-ening rates seen in concentrated binary fluids. Since the
able in stringlike domains for sufficiently thin strings. shear flow suppresses these instabilities, one might expect
that it could stabilize an anisotropic, bicontinuous morphol-
ogy against further coarsening. For a given shear rate, when
VI. DISCUSSION the domains are relatively small they will be unstable and

| have shown that shear flow can stabilize an isolatedVill coarsen, but once the typical length scale has grown to
cylindrical domain in the two-phase state of a phasethe critical radius for stabilization by the shear floR,(y),
separating binary fluid against varicose instabilities, by mix-the parts of the bicontinuous structure that are cylindrical and
ing the varicose mode with the other nonaxisymmetric peraligned with the flow will no longer be unstable. This then
turbation modes of the cylinder. Essentially, the shear flowprovides a mechanism for the creation of the nonequilibrium
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dynamic steady state seen in concentrated phase-separatifsgarticular solution is given by
fluids in shear flow.
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mikrl;, . (kr), r<R,
APPENDIX: CALCULATION OF THE PERTURBED vintivhn= ' (A7)
: ‘ ' mokrKy,1(kr), <R,
VELOCITY FIELD
The perturbed velocity field,, corresponding to a pertur- o ) mikrl;_,(kr), r<R,
; : : — R caiMO+ikx : —ipP = A8
bation of the interface given by=R— ee must sat Urn— 0G0 mokrK!_(kr), <R (A8)

isfy the hydrodynamic equations

(the solutions to the homogeneous part of the equation will

Viv= ;VP' (A1) be included in the general solution below and so are not
needed hepe The components of° must satisfy the conti-
0=V.v, (A2)  nuity equation(A2):
V?P=0. (A3) doP., vP, in
drr’n + %—F TUB,n+ikU>E,n:0-

To solve forv we again follow Happel and Brenn¢81].

The velocity is expanded as in E(.16),
This determines the constard$= /2 andch= m,/2.

Next we need a general solution to the homogeneous part
of Eg. (Al). Again these are just the appropriate solutions of
the Laplace equation:

Vin(r, ) =2, &My, (r).

We will solve for each coefficient,,,, separately so we take

vxe"?, We start by solving Eq(A3) for the pressure. Let ic,l,(kr), r<R,
P=P ing+ikx. th i | g — . A9
a(r)e ; then in genera Uyn [|02Kn(kr), (>R, (A9)
[plln(kr), r<R, o
= +
" p2Kn(kr), >R, b9 iy _[a In+a(kr), r<R, (AL0)
: LN T b K, a(kr), >R,
wherep, andp, are constants. The perturbed velocity then n+1(K")
satisfies the inhomogeneous Laplace equatidh), so the B
solution will consist of a general solution to the homoge- g g |2 In-a(kr), r<R, AL1
neous part plus a particular solutiors: vP+v9. Writing v, Urn~10on= b K,_i(kr), r>R, (ALD)

=ivyn(r)e"?* k% thex component of Eq(A1) is
and once again enforcing incompressibility gives=(a*

n? ik - J ; .
v+ vy, k2+—2 iv, n=—Pn(kr).  (A5) +a)/2 .aljdczf—(b++b )/2. The risult;sasoluuc.m for
r r v, containing six unknown constanis,, b=, andwr, ,:
|
i [(@"+a7)l(kr)+aq[l(kr)+krl (kr)], <R,
Ux,n=™75 + — ’ (Alza)
2| = (bT+b7)Ky(kr)+a[Kn(kr) +krK (kr)], r>R,
1(atlypa(kr)+a Iy q(kr)+mokr[1] (kr)+1;_,(kr)], <R,
=— Al2b
vrnT3 b K, 1(Kr)+b ™K,y (kr)—mkr[K/, (k) +K/_ (kr)], r>R, ( )
—if[atly a(kr)y=a 1 _q(kr)+ ke[l (kr) =1} _;(kr)], r<R,
Von=""5" + _ , , (AlZC)
T2 | b K pq(kr)=bT K, g (kr) = amokr[K] (k) =K/ (kr)], r>R.
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These equations give the general solutions for the coefficigpisn Eq. (3.16).

It now remains to apply the appropriate boundary conditions at the interface to specify the remaining constants. These
boundary conditions will apply to the total velocity and stress fields. Letidgnote the amplitude of the small perturbations,
recall we have

U=ug+ev,
P=Py+eP,
=11+ €0,

whereP; is the steady-state pressul¥, the steady-state stress tensor, anthe perturbed stress tensor. From Ej11), the
components of the steady-state stress tensor are

S
H§r=fo—Tnlcos€, (A13)
2S7'
- +1sm 0, r<R
 occing. T[eSKR .
7°Ssing rZ(,qul SR2)5|n0, r>R.
|
We see thall;, is continuous across the interface Hig, . M oes b imosikx
has a jump across the interface whelrt 7°. The difference Fx=Il+eoyt+eze I, —ikee Ps.
in the steady-state pressuPg across the interface is simply (A19)

the Laplace pressure across a cylindrical interfad&,
which in our dimensionless variablée dimensionless sur- The normal stress is simply
face tension isr=2/3) is - A
) Fo,=F-n=—Ps+ 60',.,.+2ikeelm0+lkXHrSX+O(62).
4 2 (A20)
P.—P=—. (A15) .

3R The two tangential components of the stress can be found

The boundary conditions are as follo\&7]. from Fy=F=Fxn, giving

:u((i)) Continuity of the velocity across the interface' (F) = €0y +ikeeM IS 1+ O(e2),  (A21)
(i) Continuity of the tangential stress across the interface, im .
=117, (Ft)x=l_[§r+60'x,+Eee'm“'kxl_[iﬁO(ez).
(iii) Jump in the normal stress across the interface due to (A22)
the mean curvaturél, IT,—T113=4H/3 (hereH is dimen-
sionless. Finally, the mean curvaturd is
To apply these boundary conditions we need to evaluate
the appropriate components of the stress tensor on the de- 1 KR+m* -1 )
formed interfacq23]. The location of the cylindrical inter- H=— ﬁJ“‘Te +0(e); (AZ3)
face for modem is r=R—ee'™?*** 50 the unit normal to
the interface is the first term is the steady-state pressure difference given by
. Eqg. (A15). Since the stationary velocity, already satisfies
L MO+ ik 5 the boundary conditions, the perturbed veloaitynust sat-
n=r+ Efe O+ikee x+0O(e7). (Al§) isfy them se)p/)arately. Denote Fhe difference be]t7\r/]veen guanti-
ties inside and outside the cylinder &R by [[f]]=f
The hydrodynamic force on the perturbed surfacé& isll —f°. Then keeping in mind EqA15) and thatIT$, is con-
.n. To lowest order ine, the three components &f are tinuous across the interface, from EgA20)—(A22) the six
boundary conditions become
Fr=—Ps+eo,, +ikeeMTITS | (A17)
[[vr]]=[[vel]=[[vx]]=0, (A243)
_ _ ﬂ imé+ikx H imo+ikxyrs 2p2 2_
Fo=€oy = €e P +ikee 5, [[O’rr]]ZE k“R“+m 1eim0+ikx’ (A24D)
(A18) 3 R?
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[[og 1= —[[ike™*IT5, 1], (A240) —27%v, n(kR)
im imo+ikxyys _ 2 K’R*+m?~1
o= || g™ ™| | (h24d =3 (A29)

Sincell§, depends om, for a given perturbation mod® of  using Eq.(A4) for the pressure. The primes indicate differ-
the cylinder the solutiorv,(r,8) given by Eq.(3.16 will entiation with respect to the argumentiqf, q=kR. Divid-
contain more than one coefficient,,. The perturbed stress ing both sides byy°k leaves
tensoro depends only ow so we can write ,

— el (@) + 200 (@) + 7K (Q) — 20{ 7(q)

r,0,x)= ryend+ikx A25
o(r,0,x)= 2, oy(r) (A25) 2 GPimio1

- = (A29)
Noting that sif=(e’—e'%/2i and using Eq.(A14) at r 37°R 9

=R we can write The left-hand side now depends only on the six integration

_ _ constants and on the dimensionless parametgeEnd u
(el (Mt DI_gim=D16) = (which remain dimensionless when written in the original
(A26) variableg. For the tangential stress in EGA27¢),

10-'Ur+0')v.9 Vg
T"R96 " or R

Sy N Syn°
mt+l wt+l

[[ieim0+ikXHzx]] _ ( _

Substituting in the full sums in Eq43.16 and Eq.(A25) and [o 11=
matching terms with the samg dependence in Eq$A24) or.nm
then gives for the boundary conditions on each coefficient

im 1
Vom =Hn(ﬁvr,n(kR)Jrkv;Yn(kR)— ﬁv(,,n(kR))H
[[Ur,nm]]:[[v B,nm]]:[[vx,nm]]zor (A273) KS
_ i_ .0 —
2 ICR2+ m2— 1 =(n'—n )M+1(5n=m+1 Sn=m-1)-
[[Urr,nm]]: 5—25mna (A27b)
R Dividing both sides by;° and multiplying byR gives

[[O'(Jr,nm]]:(ni_ 770),LL+ 1(5n:m+1_ 5n:mfl)v /’L[Imvr'n(q)—}_qv 0,’n(Q)_U.9,n(CI)]

(A270) —imuy (@) = qu (@) + 05 (q)
_ mS _k-d _
[[er,nm]]:(nl_ no)m(én:erl_ 5n:m71)- :U’+ 1qs(5n:m+1 5n:m—1)- (A30)
(A27d)

Similarly, from Eqg.(A27d) we have

The right-hand side of the normal stress condition Eg. Joe dv
(A27h) is only nonzero fon=m, and the right-hand sides of [[oxr nml]= H U(—X + _’)
the tangential stress conditions E¢a27¢) and (A27d) are ' ar X
only nonzero fom=mx= 1. This immediately shows that for _ , -

a given perturbation mode of the interface, the only non- =[[n{kvyn(kR)+ikv, n(kKR)}]

zero coefficients,,, will be those for whichn=m, n=m _ m

+1, andn=m—1. The eigenvalue equatiof3.19 is thus =(n'— Uo)m(5n=m+l_ Sn=m-1)-
tridiagonal. To solve for each matrix element ,,(r =R) #

(see Sec. IV @ we just substitute the appropriate generalpjviding by 5°k gives

solution from Eqs(A12) into the boundary condition@27)

and solve the resulting system of algebraic equations for the wlort(@) +iv! (@) ]—vrd()—iv°(q)
unknown constants. This is best done numerically given the ' ' ' '

algebra involved and was solved using a standard algorithm _p—1mS

[38]. - wt1 F(gn:m-%—l_ On=m-1)- (A31)

We can, however, see analytically how the matrix ele-

ments depend on° andR. First consider the boundary con- Both Eq.(A30) and Eq.(A31) depend only on the integra-
dition on the normal stress, EqA27b). Writing out the  tion constantsy, u, andS. In calculating the diagonal ve-
stress tensor we have locity matrix elementsv, n(R), all right-hand sides are
zero except in the normal stress equat{&28), so we see
that in this case the integration constants and thus the diag-
onal elements as well will scale as7£R. For the off-

) . diagonal elements the only nonzero right-hand sides are from
= — Pyl m(kR) +27'kv; 1 (KR) + poKn(kR) the tangential stress conditions, so the off-diagonal elements

Urm
or

1%
[[O'rr,m]]:H —Pmt27



3514 AMALIE FRISCHKNECHT PRE 58

will only depend onq, w, andS, and not orR or the mag- lined above, we find that the velocity matrix elements and
nitude of the viscosities. In the absence of the shear flow thitherefore the stability eigenvalues ket 0 are diagonal and
implies that the stability eigenvalues coming from the hydro-independent of the shear re®e
dynamic terms scale as4IR.

Finally, Egs.(A27) can be solved analytically &=0. In m
this case the general solutions to the modified Bessel equa- wnp(k=0)=———, m=2, (A32)
tion become " andr ~", and also the left-hand sides of Egs. 37°R(p+1)
(A27¢) and (A27d) are zero ak=0. This simplifies the al-
gebra considerably. Following the same procedure as ouwith wg,(k=0)=w;,(k=0)=0.
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